Презентация - история возникновения воздушного змея. Воздушные змеи в прошлом и настоящем Изучение летательных аппаратов на примере воздушного змея

Воздушные змеи относятся к древнейшим летательным аппаратам. Первые документы о них встречаются еще за несколько веков до начала нового летосчисления. В китайских рукописях рассказывается, что воздушные змеи запускались во время народных праздников. Китайцы строили змеи в форме птиц, рыб, бабочек, жуков, человеческих фигур, которые раскрашивали в самые яркие цвета (рис. 1).

Наиболее распространенным типом китайского змея был дракон - фантастический крылатый змей. Огромный дракон, поднимаемый в воздух, являлся символом сверхъестественных сил. В ряде местностей Китая до недавнего времени сохранялись следы обычая массового запуска воздушных змеев в девятый день девятого месяца - день змея.

Летающий дракон конструктивно сложен. Два-три десятка легких бумажных конусов образовывали длинное круглое тело чудовища, живописно извивающегося в полете. Змей-дракон имел крупную голову с оскаленной пастью. Сквозь пасть ветер проникал в пустое туловище и, надувая его, поддерживал в воздухе. Иногда вместо конусов в конструкцию остова дракона входили постепенно уменьшающиеся круглые диски, которые были связаны между собой шнурами. Каждый диск пересекался тонкой бамбуковой планкой, на конце которой укреплялись большие перья (рис. 2).

Для усиления эффекта была придумана специальная "змеиная музыка", напоминающая завывание ветра в дымовой трубе. Приспособление, издающее эти звуки, изготовляли из сухих головок мака, в которые вставляли камышовые свирельки. К пасти дракона прикрепляли леер, а к хвостовой части - две длинные шелковые ленты, которые извивались в воздухе вместе со змеем.

Интересное зрелище представляли фонарики, изготовлявшиеся из тонкой цветной бумаги (рис. 3), и фейерверки (рис. 4), прикреплявшиеся к змеям.

Широкое распространение воздушные змеи получили в Корее. Вначале их применение носило чисто религиозный характер, а затем запуск змеев стал увлекательным видом занятий и зрелищ.


Японский змей "Керо"

На древних японских рисунках также можно встретить изображения воздушных змеев, по форме значительно отличавшихся от китайских (рис. 5).


Японские змеи: а - "бабочка"; б - "Ятсухана"; в - "Гонбо"; г - из округи Нагасаки; д - "Бозо"; е - "Ато"

Типичный малайский воздушный змей (рис. 6) имеет форму криволинейного симметричного треугольника. Каркас его состоит из трех пересекающихся прутьев, обтяжка - из грубой ткани.

Изобретение змея, независимо от существовавшего в странах Востока, европейские историки приписывают древнегреческому ученому Архиту Тарентскому (IV в. до н. э.).

Любопытны старинные записи о первых практических применениях воздушных змеев. В одной из них говорится, что в IX в. византийцы якобы поднимали на воздушном змее воина, который с высоты бросал в неприятельский стан зажигательные вещества. В 906 г. киевский князь Олег воспользовался воздушными змеями при взятии Царьграда. Летопись говорит, что над неприятелем в воздухе появились "кони и люди бумажны, вооружены и позлащены". А в 1066 г. Вильгельм Завоеватель использовал воздушные змеи для военной сигнализации при покорении Англии.

Но, к сожалению, о форме древних европейских змеев, об их конструктивных и летных свойствах не сохранилось никаких данных.


Змей "жалюзи" конструкции Ракка

Долгое время ученые Европы недооценивали значение воздушного змея для науки. Только с середины XVIII в. воздушный змей начинает применяться при научных работах. В 1749 г. А. Вильсоном (Англия) змей был использован для подъема термометра с целью определения температуры воздуха на высоте. В 1752 г. ученый-физик В. Франклин воспользовался воздушным змеем для исследования молний. Открыв при помощи змея электрическую природу молнии, Франклин изобрел молниеотвод.

Воздушные змеи применялись для изучения атмосферного электричества великим русским ученым М. В. Ломоносовым и английским физиком И. Ньютоном.

Змей начинает оказывать науке ценные услуги. Поэтому неудивительно, что в 1756 г. знаменитый математик Л. Эйлер написал следующие строки: "Воздушный змей, эта игрушка детей, презираемая учеными, может, однако, заставить глубоко над собой призадуматься".

Значительное усовершенствование змея произвел австралийский ученый Л. Харграв в 90-х гг. прошлого столетия. Воспользовавшись работами первого планериста, немецкого инженера О. Лилиенталя, Харграв впервые применил в качестве воздушного змея две сквозные коробки, соединенные друг с другом. Лилиенталь, конструируя свои планеры, заметил, что такие аппараты имеют хорошую устойчивость в воздухе. Харграв терпеливо искал выгодные пропорции своих коробок. В конце концов, появился первый коробчатый воздушный змей, уже не требующий хвоста для устойчивости в полете (рис. 7).

Летающие коробки Харграва явились не только большем толчком для развития змейкового дела, - но и, несомненно, помогли при конструировании первых самолетов. Это положение подтверждается сходством с двухкоробчатым воздушным змеем бипланов Вуазена, Сантос-Дюмана, Фармана и аппаратов других первых авиаконструкторов.

Первый подъем человека на коробчатых воздушных змеях был осуществлен также Харгравом. Пассажир был поднят на четырех змеях общей площадью 22 м 2 .


Бескаркасный "монах"

Начиная с 1894 г., воздушный змей систематически применяется для изучения верхних слоев атмосферы. В 1895 г. при Вашингтонском бюро погоды была организована первая змейковая станция. В 1896 г. в Бостонской обсерватории была достигнута высота подъема коробчатого змея, равная 2000 м, а в 1900 г. там же змей был поднят на высоту 4600 м.

В 1897 г. начаты работы с воздушными змеями и в России. Они велись в Павловской магнито-метеорологической обсерватории, где в 1902 г. было открыто специальное змейковое отделение.

Широкое применение воздушный змей нашел в метеорологических обсерваториях Германии, Франции и Японии. Змей (поднимался на очень большую высоту. Например, в обсерватории Линдерберга (Германия) добились подъема воздушного змея более чем на 7000 м. Первая радиосвязь через Атлантический океан была, налажена с помощью коробчатого воздушного змея. Итальянский инженер Г. Маркони запустил в 1901 г. на острове Нью-Фаундлен большой воздушный змей, который летал на проволоке, служившей приемной антенной.

Коробчатым змеем Харграва заинтересовалось английское военное ведомство. Лейтенант английской армии Коди видоизменил змей Харграва. Он увеличил его площадь путем добавления боковых крылышек, размещенных на всех углах коробок, усилил прочность конструкции и ввел совершенно новый принцип сборки и разборки змея. На таких змеях стали подниматься в воздух военные наблюдатели.

В начале XX в. работу над змеями Коди продолжил капитан французской армии Сакконей. Он создал еще более совершенную конструкцию воздушного змея, являющуюся одной из лучших и по настоящее время. Сакконей, пользуясь богатыми субсидиями военного ведомства, имел возможность широко поставить свои опыты. Он основательно разработал принцип буксирного подъема змеев: одна группа змеев поднимала в воздух основной леер (трос), другая - буксировала по тросу груз. Сакконей установил первые рекорды высоты и грузоподъемности воздушных змеев.

Работы Сакконея нашли своих продолжателей во многих армиях Европы. В России полковником Ульяниным был создан для армии специальный воздушный змей (рис. 8 и 9). Ценным и остроумным новшеством в змеях его конструкции были шарнирные крылья, автоматически увеличивающие площадь змея при ослабевании ветра. Кроме Ульянина, змеями увлекались Кузнецов, Прахов и др., создавшие удачные конструкции. Во время русско-японской войны 1904-1905 гг. в русской армии были специальные змейковые подразделения.

Параллельно с работами Коди в Европе, главным образом во Франции, проводили свои эксперименты и другие конструкторы. Из них следует упомянуть Плоттера, который изменил место крепления уздечки и создал змей с килевыми плоскостями, увеличивающими грузоподъемность.

Интересную конструкцию оригинального однокоробчатого змея предложил французский инженер Лекорню. Он создал змей, коробка которого напоминает пчелиные соты (рис. 10). Идею постройки своего змея Лекорню обосновал, наблюдая полет птиц. Если смотреть на летящую птицу, то можно заметить, что плоскости корпуса и крыльев образуют некоторый угол. Такой же установочный угол в 30° Лекорню сделал у горизонтальных плоскостей змея.

Во время первой мировой войны войска различных стран и особенно Германии применяли для наблюдательных постов привязные воздушные шары, высота подъема которых, в зависимости от условий боя, достигала 2000 м. Они давали возможность наблюдать расположение противника в глубь фронта и через телефонную связь направлять огонь артиллерии. Когда же ветер становился слишком сильным, вместо воздушных шаров применяли коробчатые змеи. В зависимости от силы ветра составлялся поезд из 5-10 больших коробчатых змеев, которые прикрепляли к тросу на определенном расстоянии друг от друга на длинных проволоках. К тросу привязывали корзину для наблюдателя. При сильном, но довольно равномерном ветре наблюдатель поднимался в корзине на высоту до 800 м.

Такой способ наблюдения имел то преимущество, что он позволял подойти ближе к передовым позициям противника. Воздушные змеи не так легко расстреливались, как воздушные шары, представлявшие собой очень большую мишень. Кроме того, выход из строя отдельного змея отражался на высоте подъема наблюдателя, но не вызывал его падения. Попадания же в шар одной зажигательной ракеты было достаточно для его гибели, так как он наполнялся легковоспламеняющимся водородом.


Змей "моноблок" конструкции Роша-Донзеля

Воздушные змеи во время первой мировой войны использовали также для защиты важных военных объектов от нападения самолетов противника путем устройства заграждений, состоявших из маленьких привязных воздушных шаров и воздушных змеев, поднимавшихся до высоты 3000 м. С шаров и змеев спускались проволочные тросы, которые создавали для самолета противника большую опасность. Германия применила такие заграждения для защиты верфи подводных лодок и ангаров в Бельгии.

Для змейковых заграждений ангаров у Брюсселя были изготовлены змеи больших размеров в виде привязных самолетов. Змеи копировали очертания самолетов различных конструкций (монопланов, бипланов) с целью ввести в заблуждение летчиков противника.

Весной 1915 г. в Германии произошел интересный случай, когда привязной самолет ввел в заблуждение не летчиков противника, а собственную зенитную батарею. Однажды рано утром в воздух был поднят привязной самолет-биплан. Вскоре после подъема он скрылся в облаках. Когда к полудню облака рассеялись, в их разрыве внезапно показался этот самолет. У немецких наблюдателей создалось впечатление, что облака неподвижны, а биплан летит с довольно большой скоростью. Вскоре он исчез в облаке с тем, чтобы тут же снова появиться в следующем разрыве. Посты воздушного наблюдения и связи сообщили: "Вражеский самолет". Зенитные батареи открыли заградительный огонь. Вокруг аэродрома гремели пушки, стараясь уничтожить воздушного врага. Самолет то исчезал в облаках, то снова показывался, и заградительный огонь продолжался до тех пор, пока немцы, наконец, не поняли, что обстреляли собственный привязной самолет. Последний не был сбит лишь потому, что при стрельбе делалась поправка на мнимую скорость движения самолета и снаряды неизменно оказывались впереди неподвижное мишени.

Змейковое дело в Европе достигло наивысшего расцвета к концу войны, в 1918 г. После этого интерес к воздушным змеям ослабел. Бурное развитие авиации начало вытеснять змей из военного дела.

Многие конструкторы, ранее увлекавшиеся змейковым делом, перешли к работе над самолетами. Но их опыт постройки змеев не прошел бесследно. Он, безусловно, сыграл свою роль в истории авиации на первой стадии развития самолета.


Змей "звезда" конструкции Бабьюка

В Советском Союзе увлечение воздушными змеями началось почти одновременно с авиамоделизмом. Уже на первых всесоюзных состязаниях летающих моделей в 1926 г. были представлены довольно хорошо летавшие коробчатые змеи, построенные киевскими авиамоделистами под руководством И. Бабьюка. Одиннадцать полотняных змеев с общей рабочей площадью 42,5 м 2 были запущены на стальном тросе толщиной 3 мм со специальной аэростатной лебедки. Конструкция этих змеев - видоизменный классический тип Сакконея.

Количество поездов из коробчатых змеев, представляемых на всесоюзные авиамодельные состязания, увеличивалось. В состязаниях 1935 г. участвовало 8 поездов. Тогда впервые наиболее полно было показано разнообразное применение воздушных змеев. По лееру вверх и вниз бегали "воздушные почтальоны", при помощи которых прыгали куклы-"парашютисты", сбрасывались "бомбочки" и листовки, демонстрировалась дымовая завеса. Куклы-"парашютисты" совершали затяжные прыжки вслед за сброшенным живым "десантом" - белыми мышами в клетке. Сбрасывание со змеев моделей планеров стало обычным явлением. С высотного старта улетало за несколько километров немало моделей планеров.

В пионерских лагерях воздушные змеи все чаще и чаще применяли для сигнализации во время военных игр. Нередко зимой можно было видеть легко скользящего по снегу лыжника, буксируемого воздушным змеем.

Змейковое дело стало одним из разделов первоначальной авиационной подготовки пионеров и школьников, а воздушные змеи - полноправными летательными аппаратами наряду с моделями самолетов и планеров.

При серпуховском Доме пионеров в 1931 г. была создана и успешно работала детская змейковая станция. Руководителей этой станции ежегодно приглашали с их змейковой командой на всесоюзные авиамодельные соревнования.

Вскоре опыт серпуховичей стал широко известен. Ежегодно всесоюзные соревнования стали проводиться самостоятельно. На соревнования свои команды представляли змейковые станции Саратова, Киева, Тулы, Сталинграда и других городов.

Руководители детских змейковых станций и юные "змейкачи" с большим увлечением конструировали змеи и запускали их, проводили работу среди пионеров и школьников.

В 1937 г. в Звенигороде Центральным советом Осоавиахима СССР были организованы I Всесоюзные состязания воздушных коробчатых змеев. Неблагоприятные метеорологические условия (отсутствие необходимого ветра) не дали возможности добиться рекордных полетов змеев. Но все же, хотя и на небольшой высоте, удалось проверить их конструктивные особенности.

В 1938 г. в поселке Щербинка (ныне город Московской обл.) проводились II Всесоюзные состязания коробчатых змеев, на которых были показаны конструкции, представлявшие исключительный интерес. Например, серпуховская детская змейковая станция представила змей видоизмененной конструкции "Грунд" с несущей площадью 20 м 2 . Змей поднимал груз массой до 60 кг. Были показаны змей-парашют, змей-планер и другие.

На III Всесоюзных состязаниях коробчатых змеев, происходивших в 1939 г. в Серпухове, были установлены рекорды полета змеев на высоту. Одиночный змей, сконструированный киевским авиамоделистом (так стали называть и создателей воздушных змеев) Громовым, был поднят на высоту 1550 м. Поезд, составленный из коробчатых змеев конструкции саратовского авиамоделиста Григоренко, был поднят на высоту 1800 м. В годы Великой Отечественной войны (1943 г.) А. Григоренко был награжден за боевое применение коробчатых воздушных змеев.

На IV Всесоюзных состязаниях были четко определены технические требования к конструкции воздушных змеев. Например, каждый змей должен был держаться в воздухе при скорости ветра не более 4-5 м/с у земли, несущая площадь у каждого змея должна быть не менее 5 м 2 , общая площадь змейкового поезда должна быть такой, чтобы при ветре не более 7 м/с можно было поднять груз массой не менее 80 кг. Количество воздушных змеев должно быть не более 10 шт. Головной змей мог иметь большую площадь, конфигурация и окраска змеев произвольная.

На каждом змейковом поезде молено было установить различные приспособления и механизмы, например "воздушные почтальоны", способные поднять груз массой до 2 кг, замки для составления змейкового поезда (при диаметре леера не менее 3 мм), приспособления для аэрофотосъемки и другие.

По условиям соревнований каждая команда должна была представить сценарий игры, в процессе которой предполагалось запустить змейковый поезд. В сценарии можно было включить, например, бомбежку, т. е. сбрасывание "бомб" на какую-то, ранее намеченную цель, выброску "воздушного десанта" (сбрасывание кукол), гонки на лыжах, перевозку раненого на санях, которые тянет змей, звуковую, световую и другие виды сигнализации со змея, сбрасывание донесений и листовок.

Соревнования проводились на высоту полета одиночного змея, на высоту запуска змейкового поезда, на максимальную грузоподъемность змейкового поезда, на быстроту сборки и запуска одиночного змея.

Для обеспечения успеха на соревнованиях во многих коллективах кружков делали различные вспомогательные средства. Например, в серпуховском Доме пионеров школьники-авиамоделисты изготовили динамометр для испытания прочности леера. Динамометр, установленный на змее, при критическом напряжении включал красную лампочку. В этом же коллективе был изготовлен анемометр из старого будильника, и с помощью этого прибора записывалось изменение силы ветра.

Школьники устанавливали на змее барограф, устройство для сбрасывания в заданную точку одиночной куклы-"парашютиста" или грунтового "десанта".

Юные авиамоделисты Коломенской станции юных техников (Московская обл.) построили коробчатые змеи с подкрылками, что обеспечивало змею большую устойчивость при угле стояния около 50°. Авиамоделисты Воронежской станции юных техников строили профилированные коробчатые змеи.

Саратовские авиамоделисты привезли на соревнование змейковый поезд из пяти коробчатых змеев. Каждый змей массой до 9 кг. Головной змей имел общую площадь 17 м 2 . На змейковом поезде был установлен фотоаппарат, который делал 12 фотоснимков. Поезд способен был буксировать одного лыжника.

Команда киевских авиамоделистов привезла на соревнования змейковый поезд из шести змеев. С него можно было сбрасывать большую куклу-"парашютиста" (до 70 см, при этом купол парашюта составлял в диаметре 4 м).

Юные авиамоделисты напряженно работали, готовились к новым стартам. В Ленинграде на городские соревнования по воздушным змеям весной 1941 г. вышли более 150 участников.

После Великой Отечественной войны соревнования не проводились.

В наши дни строительство змеев не может иметь ни оборонного, ни научного значения. Однако, как простейшее, весьма доступное и увлекательное занятие, создание и запуск воздушных змеев не потеряли и не потеряют своего значения.

За рубежом, прежде всего в социалистических странах, воздушные змеи чрезвычайно популярны среди детей и молодежи. Особенно ими увлекаются на Кубе. Часто можно видеть, как кубинские дети, даже находясь на пляже, не расстаются со своим любимым занятием - в воздухе над морем парят змеи самой разнообразной конструкции, самых ярких цветов.

ЮТ Для умелых рук 1977 №7

Кто из вас не запускал воздушного змея? Но все ли знают, какие они бывают? Когда появились?

Впервые воздушный змей поднялся в небо 25 веков назад. В то время никто не мог объяснить, почему взлетает змей и какие силы действуют на него в полете.

Вначале змеи запускали для забавы, увеселений. В странах Востока, например, устраивались битвы воздушных змеев. В небо запускали двух змеев, предварительно смазав клеем и посыпав толченым стеклом бечевки, удерживающие их на привязи. Победителем считался тот, кому пepвому удавалось перепилить бечёвку противника.

Позднее воздушные змеи стали использовать и для научных целей. В своих опытах по изучению атмосферного электричества американский физик Бенджамин Франклин использовал очень большие воздушные змеи. Подъемная сила некоторых из них была настолько велика, что ученому с трудом удавалось удерживать их на привязи. Воздушные змеи помогли Франклину доказать электрическое происхождение молнии, установить наличие двух зарядов положительного и отрицательного - и проверить идею молниеотвода,

А в конце прошлого века и начале нынешнего змеи широко применялись и для метеорологических исследований. С их помощью ученые поднимали приборы на высоту более 1000 м и измеряли скорость ветра, температуру и влажность воздуха, атмосферное давление...

В наше время интерес к воздушным змеям не потерян.

Творческая мысль изобретателей многих стран рождает все новые и новые конструкции змеев: дископланов, махолётов и т. д.

Сегодня мы расскажем о двадцати трех змеях. В подборке есть и простые, нетрудоёмкие модели, есть и посложнее. Среди них нет двух одинаковых: все змеи отличаются друг от друга либо своими лётными качествами, либо конструкцией, либо технологией изготовления.

Любой змей из этой подборки можно сделать в пионерском лагере или во дворе. Специально для начинающих моделистов мы отобрали четыре конструкции. О них мы рассказываем более подробно (на рисунке они объединены).

Итак, воздушные змеи...

ПОЧЕМУ ВЗЛЕТАЕТ ЗМЕЙ

Ответить на этот вопрос нам поможет упрощённый чертеж (рис. 1). Пусть линия АВ изображает разрез плоского змея. Предположим, что наш воображаемый змей взлетает справа налево под углом А к горизонту или набегающему потоку ветра. Рассмотрим, какие силы действуют на модель в полёте.

На взлете плотная масса воздуха препятствует движению змея, другими словами, оказывает на него некоторое давление. Обозначим это давление F1. Теперь построим так называемый параллелограмм сил и разложим силу F1 на две составляющие - F2 и F3. Сила F2 толкает змей от нас, а это значит, что при подъёме она снижает его первоначальную горизонтальную скорость. Следовательно, это сила сопротивления. Другая же сила (F3) увлекает змея вверх, поэтому назовем ее подъёмной.

Итак, мы определили, что на воздушного змея действуют две силы: сила сопротивления F2 и подъемная сила F3.

Поднимая модель в воздух (буксируя ее за леер), мы как бы искусственно увеличиваем силу давления на поверхность змея, то есть силу F1. И чем быстрее мы разбегаемся, тем больше увеличивается эта сила. Но сила F1, как вы уже знаете, раскладывается на две составляющие: F2 и F3. Вес модели постоянный, а действию силы F2 препятствует леер. Значит, увеличивается подъемная сила - змей взлетает.

Известно, что скорость ветра возрастает с высотой. Вот почему при запуске змея стараются поднять его на такую высоту, где ветер мог бы поддерживать модель в одной точке. В полёте змей всегда находится под определенным углом к направлению ветра. Попробуем определить этот угол.

Возьмем прямоугольный лист картона (рис. 2). Точно по центру прикрепим его к оси О-О. Предположим, что лист вращается вокруг оси без трения и что в любом положении он находится в состоянии равновесия. Допустим, ветер дует с постоянной силой перпендикулярно плоскости листа. Естественно, что в этом случае он не сможет повернуть лист вокруг оси О-О, поскольку действие его распределяется равномерно на весь лист. Теперь попробуем установить лист под некоторым углом к ветру. Мы увидим, как воздушный поток тотчас возвратит его в первоначальное положение, то есть поставит под прямым

углом к направлению ветра. Из этого опыта следует: половина листа, наклоненная в сторону ветра, испытывает большее давление, чем та, которая находится с противоположной стороны. Поэтому, чтобы плоскость листа оставалась в наклонном положении, нужно поднять ось вращения О-О. Чем меньше угол наклона листа, тем выше нужно передвигать ось. Так определяется центр давления. А сила ветра, поддерживающая плоскость в наклонном положении, - это подъемная сила, приложенная в центре давления. Но угол наклона змея не остается постоянным: ведь ветер никогда не дует с одной и той же скоростью. Вот почему, если бы мы привязали к змею бечевку в одной точке, например, в точке совпадения центра давления и центра тяжести, он попросту начал бы кувыркаться в воздухе. Как вы поняли, положение центра давления зависит от угла а и при порывистом ветре эта точка постоянно смещается. Поэтому, чтобы сделать модель более устойчивой, к ней привязывают уздечку из двух-трёх и более бечевок. Проделаем еще один опыт.

Возьмем палочку АВ (рис. За). Пусть она тоже символизирует сечение плоского змея. Подвесим ее за нитку в центре так, чтобы она приняла горизонтальное положение. Затем прикрепим недалеко от ее центра тяжести грузик P, имитирующий центр давления. Палочка сразу же потеряет равновесие и примет почти вертикальное положение. А теперь попробуем эту палочку (рис. 3б) подвесить на двух нитках и снова привяжем к ней тот же грузик: палочка сохранит равновесие при любом положении грузика. Этот пример наглядно демонстрирует значение уздечки, которая позволяет свободно перемещать центр давления, не нарушая равновесия.

ПРОСТЕЙШИЙ РАСЧЕТ

Почему взлетает змей, мы разобрались. Теперь попробуем рассчитать его подъемную силу.

Подъемная сила воздушного змея определяется по формуле:

Fз=K*S*V*N*cos(a), где

К=0,096 (коэффициент),
S - несущая поверхность (м 2),
V - скорость ветра (м/с),
N - коэффициент нормального давления (см. таблицу) и
a - угол наклона.

Пример. Исходные данные: S=0,5 м2; V=6 м/с, a=45°.

Находим в таблице коэффициент нормального давления: N=4,87 кг/м 2 . Подставляем величины в формулу, получаем:

Fз=0,096*0,5*6*4,87*0,707=1 кг.

Расчёт показал, что этот змей будет подниматься вверх только в том случае, если его вес не превысит 1 кг.

Лётные качества змея во многом зависят от отношения его веса к несущей поверхности: чем меньше отношение этих величин, тем лучше летает модель.

ИЗ ЧЕГО ДЕЛАТЬ ЗМЕЙ

Для постройки моделей используйте легкие и прочные материалы. Запомните: чем легче змей, тем проще его запустить, тем лучше он будет летать. Каркас склеивайте из тонких ровных реек-дранок - сосновых, липовых или бамбуковых. Небольшие модели обшивайте тонкой бумагой (лучше цветной), фольгой или в крайнем случае газетой, а змеи покрупнее - тканью, полиэтиленовой или лавсановой пленкой или даже тонким картоном. Отдельные узлы и детали соединяйте между собой нитками, тонкой проволокой, клеем. Намотанные на деталь нитки обязательно смазывайте клеем. Для уздечек и леера подберите тонкую прочную нить.

ПРОСТЫЕ ЗМЕИ

Это бумажные модели для начинающих. Одни можно сделать за час-два, а другие - всего за несколько минут. Такие змеи хорошо летают и не требуют сложного управления. Итак, сначала...

Бумажные птички

Опыт многих исследователей показал, что изогнутая поверхность змея обладает большей подъемной силой и устойчивостью, чем такая же по размеру, но плоская.

Простейшие змеи американского инженера Раймонда Ниннея удивительно похожи на маленьких птичек. Они хорошо летают, демонстрируя в полете отличную устойчивость. На рисунке 1 их несколько (см. а, б, в). Всего за две-три минуты изобретатель вырезает из плотной бумаги или тонкого картона, шпона, фольги прямоугольник (соотношение сторон 4:5) и сгибает из него птичку. Затем прикрепляет к корпусу в одном или двух местах уздечку - и змей готов. Таким способом можно делать модели любых размеров - все зависит от прочности материала.

Следующая конструкция (рис. 2а) разработана американским изобретателем Даниэлем Карьяном. Не правда ли, она чем-то напоминает птичек Ниннея? Обратите внимание, что этому змею жесткость придает каркас, собранный из сосновых или еловых палочек, и замкнутые в полукольцо крылья. Для обшивки каркаса автор предлагает использовать ткань: шелк, саржу, тонкое полотно. Желающие могут поэкспериментировать с двух- или трёхкрылой конструкцией. Изобретатель считает, что, если на длинный стержень прикрепить несколько геометрически подобных крыльев, получится очень забавный змей (рис. 26).

И птички Раймонда Ниннея, и змеи Даниэля Карьяна будут летать даже в больших комнатах и коридорах, но с одним условием: запускающий их человек должен перемещаться с постоянной скоростью.

Змеи плоские...

Сначала все воздушные змеи снабжались мочальными хвостами. Но... Как-то раз канадский метеоролог Эди, много занимавшийся воздушными змеями, обратил внимание, что жители одной малайской деревеньки пускали бесхвостых змеев неправильной четырехугольной формы. Наблюдения помогли метеорологу сконструировать свой змей, который вы видите на рисунке 3. Этот четырехугольник с попарно равными сторонами напоминает параллелограмм. Такая фигура получается, когда складывают основаниями два треугольника, из которых один, АВД, - равносторонний, а другой, АСВ, - равнобедренный, причем АВ:СД как 4:5. Сторона АВ по концам стянута металлической струной чуть меньшего размера. Поэтому она слегка выгнута. Уздечка прикреплена в точках О и Д, а ткань (обшивка) натянута в верхней части, где образует две небольшие складки. Под действием ветра змей выгибается и приобретает форму тупого клина. В полёте его передние кромки как бы отбрасывают набегающий поток воздуха в обе стороны, поэтому змей устойчив.

Спустя сорок лет англичанин Г. Ирвин улучшил конструкцию Эди (рис. 4).

Известно, что срыв потока воздуха за передней кромкой приводит к образованию области завихрений над тупоугольным змеем. В результате при порывистом ветре устойчивость нарушается. Ирвин сделал просто - он вырезал в обшивке два треугольных окна, и набегающий поток стал устремляться в эти окна. Положение змея в полете стабилизировалось.

Модель, изображенная на рисунке 5, предложена французом А. Милье. Она состоит из деревянной рейки АВ, стянутой струной в дугу (хорда АВ составляет 9/10 длины рейки). В точках О и О1 к рейке крепятся две одинаковые планки СД и EF (АО1=ОВ=0,2*АВ). Подобно рейке АВ, планки тоже стянуты струной в дугу и образуют в плане равносторонний шестиугольник. Концы всех реек скреплены еще одной струной, проходящей через вершины шестиугольника.

Змей, который вы видите на рисунке 6, хорошо известен в Корее. Его четырехугольная рама, склеенная из бамбуковых палочек, обтянута тканью. Если размер двух сторон принять равным 800, а двух других - 700, то диаметр отверстия посередине должен быть 300 мм.

Посмотрите на рисунок 7. Эту модель, похожую на хищную птицу, придумал американец Сэнди Ланга. Изобретатель впервые попробовал испытать на ней принципы полета, заимствованные у природы. Фюзеляж и хвостовое оперение Ланга сделал из одной деревянной рейки. С одного конца он расщепил её, а в отверстия деревянной втулки вставил круглые рейки несущих крыльев. Расщепленную часть хвоста, концы крыльев и нос связал толстой леской - получилась очень гибкая конструкция. А рейки крыльев еще и подрессорил резиновыми амортизаторами. Змей Ланга чутко реагирует на малейшие порывы ветра. В полете он, словно бабочка, взмахивает крыльями, меняя тем самым и величину подъемной силы, и силу сопротивления, и устойчивость.

...И коробчатые

На рисунке 8 изображен один из вариантов коробчатого змея, В полёте он устойчив, потому что его несущие плоскости ориентированы к набегающему потоку под оптимальным углом атаки (подъемная сила, возникающая на них, больше). Кроме того, поперечное сечение его может быть не только квадратным, но и ромбическим. Для ромбического отношение между вертикальной и горизонтальной диагоналями равно 2:3. Глубина коробки составляет 0,7 длины большей стороны змея.

Каркас состоит из четырёх продольных и четырёх распорных реек прямоугольного сечения. На рисунке показано, как соединяются распорка с продольной рейкой.

А вот русский изобретатель Иван Конин предложил конструкцию коробчатого змея, несколько напоминающего самолёт. У него два крыла (рис. 9). Благодаря им змей быстрее поднимается вверх, сохраняет устойчивость в полете и не опрокидывается при внезапных боковых порывах ветра.

...И ЗМЕИ ПОСЛОЖНЕЕ

И по конструкции, и по использованию материалов, и по времени изготовления эти летательные аппараты отличаются от предыдущих. Они более современны и сложны. Но, наверное, тем приятнее будет опытным моделистам повозиться с ними: разобраться в схеме, понять принцип полёта, уловить некоторые особенности.

На реактивной тяге

Многие из вас, вероятно, наблюдали, что, если река широко разливается, скорость ее течения становится значительно меньше. И наоборот: в узком месте скорость потока резко увеличивается. В воздухе, как и в воде, тоже действует этот физический закон. Попробуйте направить воздушный поток в широкий конец конической трубы (суживающийся диффузор), и вы увидите, как изменится скорость воздухе: на выходе она будет больше, чем на входе. Чтобы на практике получить реактивную тягу (а именно так можно расценить изменение скорости потока в трубе), требуется одно условие: закрепить диффузор на большой пластине.

Когда плоский змей находится в воздухе, под ним создается зона повышенного давления, а над ним - пониженного. Под влиянием разности давлений поток воздуха врывается в диффузор и проходит по трубе. Но диффузор конический, поэтому скорость выходящего потока будет больше входящего (вспомним реку). Значит, диффузор работает как реактивный двигатель.

На рисунке 1 (см. стр. 6) вы видите воздушный змей англичанина Фредерика Бенсона, в конструкции которого использован эффект диффузора. Изобретатель утверждает, что реактивная тяга не только увеличивает скорость подъема воздушного змея, но и придаст ему дополнительную устойчивость в полёте.

Устроен реактивный змей довольно просто. Две прямоугольные поперечины скреплены в центре крест-накрест и связаны по краям прочной нитью. На этот каркас установлен согнутый из плотной бумаги или фольги диффузор. Обшивка обычная: бумага, ткань...

По принципу АВП

Известно, что аппараты на воздушной подушке (АВП) приподнимаются благодаря разности давлений: под днищем давление всегда больше, чем сверху. А устойчивость аппарата создается особым устройством, равномерно распределяющим поток газа по всему периметру.

Американский инженер Франклин Белл доказал, что и в воздухе могут летать аппараты, подобные АВП. Фантазия? Нет. Модель воздушного змея - тому свидетель (рис. 3 на стр. 7).

Гладкие днище и борта, небольшой киль, плавные обводы корпуса - сложная конструкция. Но зато набегающий поток воздуха без срывов и завихрений обтекает корпус и легко поднимает змей. Нетрудно заметить, что эти аэродинамические преимущества эффективны не только при наборе высоты. Загнутые борте корпуса неплохо стабилизируют положение змея в воздухе на большой высоте. И последнее. Приглядитесь: не превда ли, в продольном сечении модель чем-то непоминает быстроходную моторную лодку?

Взлетает... парашют

Принято считать, что на парашюте спускаются только вниз. Поднимать человека вверх, даже в восходящем потоке, парашют не может. Но группа польских инженеров попыталась опровергнуть это мнение. Они доказали, что при некоторых условиях парашют может подниматься вверх.

Вспомним знакомую с детства игру. Если на маленький парашютик - семечко одуванчика - подуть снизу, он поднимется вверх. Конечно, сравнивать одуванчик и современный парашют можно лишь условно - вертикально восходящую струю воздуха польские изобретатели создают мощными вентиляторами. Но ведь и обычный ветер нельзя сбрасывать со счетов, утверждает американец Джек Кармен и предлагает игрушку - змей-парашют (рис. 4).

Воздушный поток ударяет в слегка наклоненный купол парашюта и поднимает его вверх. Конструктивно модель ничем не отличается от известных детских парашютиков (об одном из них мы уже писали в приложении № 4, 1974 г.). Но есть и отличия. Например, для стабилизации полета к змею-парашюту прикреплен хвост, а в центре под куполом закреплена телескопическая трубка. Она служит одновременно и жёстким каркасом, и регулятором положения центра тяжести модели.

В полёте диск

Неплохую устойчивость в полёте аппарат приобретет в том случае, если придать ему форму диска. Один из вариантов летающего диска представлен на рисунке 2 (см. стр. 6). Модель очень похожа на два невысоких конуса, сложенных вместе. Но конусы плохо будут летать, считает изобретатель Вильбур Бодель из Швейцарии, поэтому он дополняет конструкцию килем, а также небольшим грузиком, смещающим центр тяжести вниз (таким образом увеличивающим устойчивость аппарата), и отверстием в нижней части обшивки. Но для чего нужно это отверстие?

На высоте ветер дует сильнее, чем у земли. А это значит, что изменяется не только его скорость, но и давление. Нельзя ли использовать перепады давления для создания дополнительной реактивной тяги? Оказывается, можно. При сильном порыве ветра внутренняя полость змея заполняется несколько большим количеством воздуха. Значит, внутри змея создается избыточное давление. Когда же порыв ослабевает, давление снаружи падает и воздух изнутри устремляется через отверстие в обшивке наружу. Возникает хоть и слабая, но реактивная струя. Она-то и создает дополнительную подъемную силу. Характерной особенностью этого змея является то, что его можно запускать и ночью. Для этого вместо грузика Бодель устанавливает миниатюрный фонарик с отражателем, лампочкой и батарейкой напряжением 1,5 В.

На рисунке "Вид сбоку" видно, что каркас змея собран из множества реек, жестко скрепленных между собой. Обратите внимание на характерные узлы, связывающие рейки с наружным кольцом-ободом, ступицей и килем.

А вот у дисколёта французского инженера Жана Бортье уже три киля. Он хорошо взлетает, плавно маневрирует в воздухе, даже при большом ветре, и неподвижно висит на привязи при слабом. Расскажем поподробнее, как его сделать (см. рис. на стр. 10).

Как и у многих других змеев, каркас его набирается из тонких деревянных реек, скрепляется проволочным ободом и обтягивается тонкой бумагой. Итак, все по порядку.

Подготовьте для каркаса четыре ровные рейки сечением 3x3 мм, сложите их вместе, как показано на рисунке "Вид сверху", склейте в центре, свяжите нитками и промажьте клеем. По периметру каркаса согните обод из стальной проволоки диаметром 0,4-0,5 мм и привяжите его нитками с клеем к концам реек (см. рис.). Концы обода соедините вместе и обмотайте нитками с клеем. Удобнее всего их состыковать спереди, в районе центральной рейки "а". Если у вас не найдется подходящей проволоки, то сделайте обод из толстой нити. Не забудьте ее приклеить к рейкам.

Обтяните диск и кили папиросной или газетной бумагой. К диску обшивку приклеивайте снизу - это заметно уменьшит сопротивление модели. Но можно бумагу накладывать и сверху. Правда, тогда обшивку придется приклеивать ко всем рейкам и ободу, иначе сильный порыв ветра сорвет ее.

На нижней поверхности диска установите три киля (можно обойтись и одним-двумя, но тогда размеры килей придётся увеличить)- Ободья килей проще всего изготовить из тонких бамбуковых или сосновых реек - эти материалы легко сгибаются, и вы сможете получить плавные обводы.

Если вы захотите сделать большой змей, то не забудьте укрепить его каркас еще двумя-тремя рейками.

К готовому змею привяжите уздечку - три короткие нити. Они удерживают модель под необходимым углом атаки. Центральную нить уздечки разрежьте пополам и свяжите ее концы с резиновым кольцом-компенсатором. Это кольцо, растягиваясь при сильных порывах ветра и неожиданных рывках, снимает часть нагрузки с каркаса. К уздечке привяжите леер. Для небольшого змея подойдут суровые нитки (кордовая леска). Готовую модель испытайте.

Как мы уже говорили, змей-диск можно запускать даже при слабом ветре. А если его вообще нет, попробуйте запустить модель, буксируя за собой на бегу.

Будьте готовы к любым неожиданностям. Если змей вдруг полетит петлями или начнет резко снижаться, не мешкая выпустите леер из рук - при ударе о землю модель не сломается. Поднимите змей и внимательно осмотрите его; исправьте перекосы; если нужно, уменьшите угол атаки (увеличьте длину центральной бечёвки) и запустите змей снова. Если он не поддается регулировке, значит, неисправимо перекошена плоскость диска. Попробуйте прицепить к модели хвост из полоски бумаги, или пучка нитей длиной метр-полтора, или из комочка бумаги на нитке.

Вместо каркаса... воздух

Многие изобретатели для изготовления своих моделей используют не рейки и бумагу, а... воздух.

Посмотрите но рисунок 5. Это надувной воздушный змей канадского изобретателя Поля Рассела (см. стр. 7). На рисунке он только внешне выглядит сложным. На самом деле очень прост: два листа воздухонепроницаемого материала - это все, что потребовалось Расселу для изготовления модели. Продольные и поперечные швы-спайки делят внутренний объем на несколько связанных между собой надувных полостей. Швы придают всей конструкции необходимую объемную прочность. И еще. Надутый корпус не имеет острых выступающих кромок. А это значит, что на поверхности надувного змея не возникнет завихрений, и поэтому модель будет устойчива в полете. Но сделать такой змей нелегко - требуются определенные условия в работе.

Модель финского инженера С. Кетолы (см. рис. на стр. 11) намного легче в изготовлении.

Кажется, можно ли придумать проще? Взял два куска полиэтиленовой пленки, сварил их по краям и в середине горячим утюгом или паяльником - и змей готов. Но многие ли из вас умеют сваривать пленку так, чтобы швы получались герметичными? Начинающих моделистов заранее предупреждаем: операция эта не из легких. Прежде чем браться за изготовление змея, попробуйте проварить несколько швов на каком-нибудь полиэтиленовом пакете и испытайте их не герметичность. Пользуйтесь утюгом с регулятором температуры. Не забудьте перед сваркой обезжирить полиэтиленовые заготовки.

По размерам, указанным на рисунке, выкройте из пленки две заготовки. Сложите их вместе и, отступив от края на 10-15 мм, медленно проведите краем горячего утюга или паяльником по всему периметру заготовок. В трех местах получившегося шва: по бокам - внизу и сверху в любом месте - оставьте маленькие отверстия. Через них вы будете накачивать змей. Затем сварите заготовки по диагоналям. И чтобы вы были спокойны за герметичность швов, края заготовок оплавьте на огне свечи. Делайте это в приспособлении, которое показано на рисунке.

Для крепления уздечек и хвоста прожгите в швах шесть отверстий диаметром 1-2 мм. Делайте это сильно негретым гвоздем или кончиком пламени свечи.

Готовую модель надуйте и заварите свечой отверстия в наружном шве или, сложив края обшивки вдвое, скрепите их канцелярскими скрепками, предварительно смочив отверстия водой или смазав техническим маслом.

Когда научитесь делать небольшие надувные змеи, попробуйте изготовить и запустить большую модель - метровую или двухметровую. Только хватит ли у вас сил удержать ее?

Перед вами модель (рис. 7, стр. 8). Но какая? "Вертолет", - вероятно, подумают одни из нас, увидев роторы. "Воздушный змей", - скажут другие, подметив у модели уздечку и леер.

Набегающий поток воздуха ударяет в плоскость змея (в данном случае - ротор), возникает подъемная сила, и модель поднимается вверх. Так могло бы быть, если бы ротор стоял на месте. Но ведь он вращается, а это значит, что на его лопастях тоже возникает подъемная сила. Следовательно, в полёте змей получает дополнительный импульс энергии, толкающий модель вверх. Как видите, преимущества по сравнению с другими типами змеев налицо.

А этот змей-вертолет сделан в Бразилии Р. Фьюгэстом (рис. на стр. 10). На наш взгляд, модель бразильца наиболее интересная из подкласса летательных аппаратов вертолетного типа. У этого змея три ротора: два несущих и один хвостовой. Несущие роторы, вращаясь в разные стороны, создают подъемную силу, а хвостовой - стабилизирует положение модели при взлете и удерживает ее на высоте. Конструкция змея предельно проста.

Каркас собирается из двух продольных, склеенных под углом, и двух поперечных реек. Рейки склеиваются между собой и для большей жёсткости укрепляются нитками с клеем. На поперечной рейке устанавливаются несущие роторы, на продольных - хвостовой. Чтобы все роторы легко вращались, их насаживают на проволочные оси.

Изготовление роторов - наиболее ответственная операция. Склеивать детали надо аккуратно, не торопясь. От того, насколько удачно вы сделаете ротор, зависит подъемная сила змея.

Мы предлагаем вам два варианта роторов, но их может быть и больше. Попробуйте сами сконструировать ротор. Испытайте его в деле. А пока расскажем о тех, которые показаны на рисунке.

Первый вариант. Такой ротор больше всего подходит для крупных моделей. Змей с четырьмя, шестью или восемью лопастями неплохо взлетает и хорошо держится на высоте. Делается ротор так.

Склейте две сосновые или бамбуковые рейки крест-накрест и обшейте их ватманом либо липовым (березовым) шпоном. В центре ротора с обеих сторон наклейте по шайбе из тонкой фанеры, шпона или целлулоида и просверлите сквозное отверстие для оси.

Второй вариант. Этот ротор напоминает детскую вертушку. Он хорош для небольшого легкого змея.

Собирается такой ротор из тонких бамбуковых реек (сечением 3x3 - в центре и 1,5x1,5 мм - на концах), папиросной или газетной бумаги, двух шайб (шпон, целлулоид) и прочной нити. Склейте рейки между собой, как показано на рисунке, и подтяните нитями их концы к основанию лопастей.

Змей или вертушка?

Наблюдая за полётом артиллерийского снаряда, Густав Магнус обнаружил странное явление: при боковом ветре снаряд отклонялся от цели вверх или вниз. Возникло предположение, что здесь не обходится без аэродинамических сил. Но каких? Ни сам Магнус, ни другие физики не могли это объяснить, И может быть, поэтому практического применения эффект Магнуса долго не находил. Первыми нашли ему применение футболисты, хотя и не знали о существовании этого эффекта. Наверное, каждый мальчишка знает, что такое "сухой лист", и наслышан о мастерах этого удара: Сальникове, Лобановском и других.

Сегодня физика эффекта Магнуса объясняется просто (об этом см. "Юный техник", 1977, № 7). Сейчас существует даже целый самостоятельный подкласс воздушных змеев, принцип полета которых основывается на эффекте Магнуса. Один из них перед вами (рис. 6 на стр. 8). Его автор американский изобретатель Джой Эдвардс, Этот змей чем-то напоминает вертушку. В полёте корпус змея, как и артиллерийский снаряд, за которым наблю дал немецкий физик, вращается вокруг своей оси. При этом крылья-лопасти преобразуют напор ветра в подъемную силу, а устойчивость змей сохраняет за счет симметричного обтекаемого корпуса и круглого киля.

Устроен змей так. Центральный стержень прямоугольного сечения, круглый киль и крылья-лопасти образуют достаточно прочный корпус, который вращается на двух осях, закрепленных на торцах стержня. Ушки и уздечка связывают корпус с леером. Следует подчеркнуть, что воздушные змеи этого типа - почти не тронутая область изобретательского творчества.

А теперь попробуйте сделать модель, которую придумал американец С. Альбертсон (рис. на стр. 11). Принцип действия змея Магнуса (так автор называет свою модель) хорошо виден из рисунка.

Полуцилиндры, закрепленные на рейках и закрытые с торцов дисками, под напором набегающего потока воздуха вращаются вокруг своих осей. Если за эти оси зацепить уздечку и привязать их к лееру, то аппарат легко взлетит.

Змей состоит из каркаса с осями, двух полуцилиндров, четырех полудисков и уздечки. Каркас набирается из четырех продольных и двух поперечных реек (сосна, бамбук). С него и начните.

Склейте рейки между собой, а места соединений плотно обмотайте нитками с клеем. Концы центральных продольных реек согните на паяльнике, как показано на рисунке, склейте и свяжите нитками. Затем закрепите на них проволочные оси (крепление такое же, как и у змея-вертолета). За эти же оси привяжите и уздечки.

Полуцилиндры согните из ватмана и приклейте их к продольным рейкам каркаса. В последнюю очередь на каркасе установите кили. (Каждый из них составлен из двух полудисков.) Приклейте их на поперечные рейки изнутри так, чтобы планки оказались снаружи.

Итак, вы построили и испытали в полете змей Магнуса. Что же дальше? Попробуйте поэкспериментировать с этим летательным аппаратом. Например, увеличьте размеры полуцилиндров и корпуса змея. Или сделайте летающую гирлянду из нескольких змеев (см. рис.). Испытайте модель. О результатах эксперимента сообщите нам.

В. ЗАВОРОТОВ, инженер, А. ВИКТОРЧИК, инженер, мастер спорта СССР

Рис Н. КИРСАНОВА и В. СКУМПЭ

Возраст: 13 лет

Место учебы: МБОУ “ Школа- гимназия №10”им. Э. К. Покровского г. Симферополя, Республика Крым, Российская Федерация

Руководитель: Кривощеков Роман Витальевич, методист физико- математического отдела ПДО ГБОУ ДО Республика Крым МАН “ Искатель”, г. Симферополя

Историко- исследовательская работа на тему:

Воздушные змеи: детские забавы или практическая аэронавтика?

План

1 Введение

2 История возникновения и применения воздушных змеев

3 Почему и как летает воздушный змей?

4 Виды воздушных змеев

6 Список использованной литературы

Введение

Многие родители, покупая своим детям воздушного змея, даже не догадываются, что изготовление и запуск воздушных змеев с одной стороны- детская забава, привлекающая к себе людей всех возрастов, с другой- увлечение, способствующее развитию наблюдательности, смекалки и творческого потенциала. И на первый взгляд такая простая и обычная для нас игрушка, не совсем уж проста, как может показаться.

Цель работы - изучить воздушный змей, как летательный аппарат, определить области применения, сконструировать и запустить воздушный змей.

Задачи: - изучить историю возникновения воздушных змеев;

Выяснить виды и области их применения;

Выяснить, почему и как летает змей;

Сконструировать змей и испытать его.

История возникновения и применения воздушных змеев

История воздушных змеев берет свое начало еще во времена древнего Китая и насчитывает, как минимум, 2000 лет. История происхождения воздушного змея основывается, прежде всего, на преданиях и легендах, т.к. материалы из которых изготавливали змеев (дерево, бумага, ткань, листья и ветки деревьев) разрушались довольно быстро. Самые старые археологические находки насчитывают около 200 лет.

Змеи строились в виде бабочек, птиц, рыб, жуков, которые раскрашивались в яркие цвета. Наиболее распространен был змей- дракон, похожий на полукрокодила - полузмею.

В более позднее время воздушные змеи стали строить в виде плоских рамок, обтянутых бумагой или тканью. Они уже ничем не напоминали сказочного змея, но название сохранилось до наших дней.

С самого начала своего существования воздушный змей применяли в трех основных направлениях - военные действия, обряды и быт. Применение змея в военных целях сводилось в первую очередь к измерению расстояния до вражеских объектов и устрашению врагов. В истории России тоже есть упоминания о воздушных змеях: в 906 году, во время взятия Царьграда, князь Олег приказал сделать много воздушных змеев в виде всадников и пеших воинов, чтобы внушить ужас защитникам города: они вдруг увидели, что на них с неба спускается несметное русское воинство.

Использовали воздушные змеи и в обрядах. Считалось, что немного приблизившись к небу, где жили боги и, привлекая их внимание своей яркой внешностью, было больше шансов обратить внимание богов на молитвы людей. Так, например, запуская змея, отпугивали нечисть и защищали от злых сил, болезней, просили богатый урожай.

Также воздушные змеи использовались в Азии для ловли рыбы, отпугивания птиц от зерновых культур, для поднятия строительных материалов к вершинам зданий, ну, и конечно, в качестве игрушек.

Приглядывались к этой детской игрушке и ученые. Знаменитый физик, математик и астроном Леонард Эйлер писал: “ Воздушный змей, детская игрушка, пренебрегаемая взрослыми, будет когда-нибудь предметом глубоких исследований”. И он не ошибся. Еще в 1749 году шотландский астроном А. Вильсон поднял на змее термометр для измерения температуры воздуха на высоте. Знаменитый американский ученый Б. Франклин с помощью воздушных змеев проводил исследования атмосферного электричества и доказал, что молния при грозе- не что иное, как электрический разряд огромной силы. Открыв в результате этих исследований электрическую природу молний, Франклин изобрел громоотвод.

Великий русский ученый Михаил Ломоносов тоже строил воздушные змеи для исследования электричества в атмосфере. 26 июня 1753 года Ломоносов “ при помощи змея извлек молнию из облаков”. Он запустил воздушный змей в грозу и по бечевке, используемой как проводник, извлек разряд статического электричества. Эти опыты едва не стоили ему жизни, а вот его последователь академик Рихман был убит разрядом электричества.

В 19 веке воздушные змеи также широко применялись для метеорологических наблюдений. В начале 20 века воздушные змеи внесли свою лепту в создание радио. А.С. Попов использовал змеи для подъема антенн на значительную высоту. Важно отметить использование воздушных змеев при разработке первых самолетов. В частности, А.Ф. Можайский, прежде чем начать строительство своего самолета, провел серию испытаний с воздушными змеями. На основании результатов этих испытаний были выбраны размеры самолета, которые должны были обеспечить ему достаточную подъемную силу.

Практические возможности воздушного змея привлекали внимание военных. В 1848 г. К.И. Константинов разработал систему спасения судов, терпящих бедствие вблизи берега, с помощью воздушных змеев. Во времена первой мировой войны войска различных стран применяли змеи для поднятия на высоту наблюдателей- корректировщиков артиллерийского огня, разведки вражеских позиций. Воздушные змеи использовались и на фронтах Великой Отечественной войны. Например, с их помощью наши бойцы разбрасывали листовки.

В послевоенные годы воздушные змеи стали увлекательным занятием для школьников. Но наряду с этим их еще часто применяют в области метеорологии для исследований и наблюдений нижних слоев атмосферы. Коробчатые змеи поднимают приборы, записывающие температуру, давление, влажность воздуха и направление ветра на высоте. В далекой Антарктиде наши ученые широко использовали змеи для изучения атмосферы до высоты примерно 1000 м.

В настоящее время воздушные змеи не то, чтобы не забыты, они живут полноценной, активной жизнью. Воздушные змеи помогают метеорологам в изучении верхних слоев атмосферы. На змее можно укрепить не только барометр и термометр, но и фото- и видеоаппаратуру, впоследствии используя полученные данные для топографических карт. Использование воздушного змея в таких целях значительно выгоднее, проще и дешевле, чем привлекать тяжелую летную технику. Также радиолюбители как и 100 лет назад, так и сейчас используют воздушного змея для получения устойчивого сигнала.

У воздушного змея есть и свой праздник. Ежегодно во второе воскресенье октября во всем мире празднуется Всемирный день воздушного змея.

Почему и как летает воздушный змей?

Воздушный змей принадлежит к летательным аппаратам тяжелее воздуха. Почему же змей поднимается и что удерживает его на высоте? Основное условие для этого - движение воздуха относительно змея. Скорость и направление ветра постоянно меняются. Не только горы, но и дома, мосты, строения, деревья отклоняют ветер у поверхности земли от его горизонтального направления. Так как же взлетает воздушный змей? Ответить на этот вопрос поможет упрощенный чертеж. Пусть линия АВ изображает разрез плоского змея, а - угол к набегающему потоку ветра. Рассмотрим, какие силы действуют на змей в полете. На взлете плотная масса воздуха препятствует движению змея, то есть оказывает на него некоторое давление. Обозначим силу давления F1 . Теперь построим параллелограмм сил и разложим силу F1 на две составляющие- F2 и F3. Сила F2 толкает змей на нас, а это значит, что при подъеме она снижает его первоначальную горизонтальную скорость. Следовательно, это сила сопротивления. Другая сила F3 увлекает змей вверх, это подъемная сила.

Поднимая змей в воздух, мы как бы искусственно увеличиваем силу давления F1 на поверхность змея. Но сила F1, как мы уже знаем, раскладывается на две составляющие: F2 и F3. Масса модели постоянна, а действию силы F2 препятствует леер. Значит, увеличивается подъемная сила- змей взлетает. Известно, что скорость ветра с высотой возрастает, ведь чем выше от земли, тем меньше предметов, которые препятствовали бы его движению. Вот почему при запуске стараются поднять змей на такую высоту, где ветер мог бы его поддержать.

Виды воздушных змеев

Все воздушные змеи можно разделить на две основные группы: неуправляемые и управляемые.

К неуправляемым относятся привычные всем воздушные змеи, которые, будучи подняты в небо, находятся там примерно в одной и той же точке, и влияние на перемещение которых, может оказать только набегающий поток воздуха.

Простейшие неуправляемые змеи- плоские. Родоначальники всех воздушных змеев, они обладают плоским каркасом. Стабилизация достигается за счёт формы змея, воздушных потоков в парусе, хвостов. В качестве примера можно привести русский змей, индийский змей, змей “ звезда”, змей с дельтакрылом.

Изогнутые воздушные змеи имеют поперечный изгиб в конструкции, который позволяет им быть более устойчивыми по сравнению с плоскими змеями, избавляет от необходимости использовать для стабилизации хвост, следовательно улучшает ветровой диапазон змея. Изгиб в конструкции достигается или за счёт специально изогнутого соединительного элемента, или за счёт натягивания поперечных элементов каркаса наподобие лука.

Познакомившись с конструкциями плоских змеев мы узнали, что ни длина, ни ширина большинства плоских змеев не превышают 1 м. Почему так? Чтобы ответить на этот вопрос, надо рассмотреть два важных параметра: подъемную силу и прочность змея. Плоский змей с большим размахом крыльев сделать трудно, существенно не увеличивая прочность его элементов. Но увеличение прочности приводит к увеличению ширины и толщины конструкционных элементов каркаса, что сказывается на массе змея. Беспредельно увеличивать массу нельзя- наступает момент, когда уже подъемной силы недостаточно для взлета змея. Изобретатели попытались обойти это противоречие. Так появились коробчатые змеи, прочность которых много выше прочности плоских змеев.

Коробчатые змеи. Воздушные змеи данной группы обладают пространственным каркасом, они по-настоящему трёхмерны, также за счёт каркаса ещё больше возрастает устойчивость, а увеличение рабочих плоскостей влечёт за собой увеличение подъёмной силы. Хорошо всем известны такие воздушные змеи, названые по имени их конструкторов, как змей Хараграва, змей Поттера.

Нежесткие змеи. Это гибридная группа змеев, основное отличие которой заключается в том, что форма принимается за счёт набегающего потока воздуха. При этом в конструкции всё-таки применяются отдельные жёсткие и полужёсткие элементы каркаса.

Бескаркасные змеи. Форма, принимаемая за счёт проникающего внутрь змея воздуха, и полное отсутствие каркаса как такового — отличительные признаки этой группы. Главными достоинством является полная свобода в размерах и форме воздушного змея, малый вес.

К управляемым воздушным змеям относятся змеи,полётом которых можно управлять за счёт наличия двух и более строп.

Двухстропные. Воздушные, так называемые спортивные или пилотажные, змеи обычно треугольной (дельтавидной) формы с двумя стропами, по одной в каждую руку. За счёт строп возможно управление направлением полёта этого змея. Кроме того за счёт конструкции воздушный змей способен осуществлять манёвры не только в двух плоскостях относительно пилота, но и в третьей плоскости.

Четырехстропные. Четыре стропы, прикреплённые к двум ручкам, позволяют полностью контролировать угол атаки этих воздушных змеев. Под управлением пилота змей способен лететь в любом направлении, вращаться и останавливаться в любой точке ветрового окна.

Бескаркасные. В этой категории управляемых змеев находятся змеи, предназначенные для буксировки, они могут быть двух- и четырёхстропными. Форму парус принимает как за счёт набегающего потока, так и за счёт каркаса, сформированного сжатым воздухом. Основное предназначение — буксировка человека.

Мы рассмотрели основные типы воздушных змеев, но есть змеи, которые по конструкции и применяемым материалам отличаются от них. Рассмотрим некоторые из них.

Змеи по принципу АВП . Известно, что аппараты на воздушной подушке (АВП) приподнимаются благодаря разности давлений: под днищем давление всегда больше, чем сверху. А устойчивость аппарата создается особым устройством, равномерно распределяющим поток газа по всему периметру. По такому принципу могут летать и змеи.

Змей- парашют. Воздушный поток ударяет в слегка наклоненный купол парашюта и поднимает его вверх. Для стабилизации полета к змею- парашюту прикрепляют хвост, а в центре под куполом закреплена телескопическая трубка. Она служит одновременно и жестким каркасом, и регулятором положения центра тяжести модели.

Змей- диск. Форма такого змея придает неплохую устойчивость в полете. Модель очень похожа на два невысоких конуса, сложенных вместе. Конструкция дополнена килем, а также небольшим грузиком, смещающим центр тяжести вниз и таким образом увеличивающим устойчивость аппарата, и отверстием в нижней части обшивки. Это отверстие позволяет использовать те перепады давления, которые создаются при сильных порывах ветра.

Змеи- вертушки. Вертушки, вращаясь под действием набегающего потока воздуха создают не только поверхность, играющую ту же ролью что и плоскость коробчатого или плоского змея, а и благодаря углу атаки с их помощью создается дополнительная подъемная сила. Это позволяет при прочих равных условиях делать змеев меньших размеров.

Змей- вертолет. В городе бывает трудно найти большую открытую площадку, где можно было бы свободно разбежаться с воздушным змеем. Змей- вертолет не требует много места для своего запуска, и непогода ему не помеха.

Змеи с диффузорами . Змей такого типа мы решили построить и испытать. Конструкция такого змея очень проста. Две рейки скреплены в центре крест- накрест и связаны по краям прочной нитью. Обшивкой змея служит не продуваемая плащевая ткань, на которую прикреплен диффузор из этой же ткани(фото 1). Мы запустили наш змей на школьном стадионе. (фото 2). Движущийся по диффузору со все возрастающей скоростью воздух, увеличивает скорость змея, а еще, что более существенно, придает ему дополнительную устойчивость в полете(фото 3,4,5).

фото 1
фото 2

фото 3
фото 4
фото 5

Выводы

На основании проведенных мной исследований я пришел к следующим выводам:

1 Воздушный змей имеет многовековую историю. Их строили из разных материалов и придавали им различные формы.

2 Применение и использование воздушного змея была очень разнообразна: в военных действиях, обрядах, быту, а также для изучения физических явлений. Ну и конечно, его всегда использовали как детскую игрушку.

3 В наши дни змей не используют для оборонного значения и в научных исследованиях его роль не очень значительна, но для людей, заинтересованных в аэронавтики, он помогает понять основные принципы полета всех летательных аппаратов.

Поэтому можно с уверенностью утверждать, что такая детская забава, как воздушный змей, является, прежде всего, примером практической аэронавтики.

Список использованной литературы

    Ермаков А.М. Простейшие авиамодели: Книга для учащихся 5-8 классов. — М.: Просвещение, 1984. — 160 с.: ил.

    Заворотов В.А. От идеи до модели: Книга для учащихся 4-8 классов.- М., Просвещение, 1988.- 160 с.: ил. — (Сделай сам).

    Перельман Я.И. Занимательная физика. Книга первая.-М.: Наука, 1976. - 224с.:ил.

    prokite.ru/kites/tipyi-vozdushnyih-zmeev/

  1. www.kite.ru/news/kitestaff/the-kite-story.php

О.БУЛАНОВА

Воздушные змеи были изобретены в Китае еще до того, как историки начали писать свои хроники. Первые воздушные змеи китайцы начали делать из бамбука и листьев растений. После изобретения шелка в 2600 г. до н.э. китайцы стали делать воздушные змеи из бамбука и шелка.

В китайских рукописях рассказывается, о воздушных змеях в форме птиц, рыб, бабочек, жуков, человеческих фигур, которые раскрашивали в самые яркие цвета.

Наиболее распространенным типом китайского змея был дракон – фантастический крылатый змей. Огромный дракон, поднимаемый в воздух, являлся символом сверхъестественных сил.

В китайском фольклоре много историй о том, что воздушных змеев запускали как для удовольствия, так и для дела. Наиболее часто их применяли в военных целях. Кроме этого, китайцы использовали воздушных змеев для того, чтобы измерить расстояние между своей армией и стенами замка противника.

Рассказывают, что полководец Хань Синь, пытаясь вызволить императора, запустил змея из своего лагеря и по длине веревки определил точное расстояние до стены осажденной столицы, благодаря чему сумел устроить подкоп.

Еще при помощи змеев в небо поднимали разведчиков – наблюдателей.

Существует легенда о том, что в 202 г. до н.э. генерал Хуан Тенг и его армия были окружены противниками и им грозило полное уничтожение. Говорится, что случайный порыв ветра сорвал с головы генерала шляпу, и тогда к нему пришла идея создания большого количества воздушных змеев, снаряженных звуковыми устройствами.

Согласно китайским хроникам, осажденный в своей столице китайский император Лю Бан запускал их над лагерем мятежников. Якобы невидимые ночью, снабженные свистульками змеи издавали страшные звуки, деморализуя солдат противника.

Глубокой ночью эти воздушные змеи летали прямо над головами армии противников, которые, услышав загадочные завывания в небе, запаниковали и убежали.

Однако в Юго-Восточной Азии и Новой Зеландии умеющее парить в воздухе устройство, видимо, придумали независимо от Китая. Его сооружали из пальмовых листьев и использовали в рыбной ловле, подвешивая к парящей над водой нити крючки. Кроме того, он применялся крестьянами в качестве огородного пугала.

Не стоит забывать и о религиозном значении воздушных змеев: в большинстве культур Дальнего Востока уходящая в небо нить служила символом связи с богами воздуха и душами предков. В Таиланде она призвана была отгонять муссонные дожди.

В VII в. воздушный змей долетел до Японии. Возможно, они были принесены в страну Буддийскими миссионерами в давние времена, около 618-907 гг.

В Японии воздушные змеи приобрели популярность, ему стали придавать форму журавля, рыбы, черепахи. Стали появляться воздушные змеи в виде красочно раскрашенных полотен.

На древних японских рисунках также можно встретить изображение воздушных змеев, по форме значительно отличавшихся от китайских.

Воздушные змеи в этой стране служили как бы связующим звеном между человеком и богами. Змеев запускали для того, чтобы отпугнуть злые силы, защититься от несчастий, обеспечить хороший урожай и здоровье.

Рассказы о том, как эти устройства поднимали в воздух “шутихи”, строительные материалы и даже людей, весьма многочисленны. Например, самурай Тамемото был вместе с сыном сослан на остров Хатидзе. Этот японский Дедал соорудил гигантский воздушный змей, на котором его сын сумел улететь с острова.

Сюжет, видимо, сказочный, однако исторически засвидетельствованы змеи “Ван-Ван” с размахом крыльев 24 м и длиной хвоста 146 м. Такая махина весом под 3 тонны легко могла поднять в воздух человека.

В Индии популярность приобрели сражения змеев, они и сейчас во время праздника Макар Санкранти собирают огромные толпы зрителей.

Широкое распространение воздушные змеи получили в Корее. Вначале их применение носило чисто религиозный характер, а затем запуск змеев стал увлекательным видом занятий и зрелищ.

В Малайзии воздушные змеи тоже были популярны. Типичный малайский воздушный змей имеет форму криволинейного симметричного треугольника. Каркас его состоит из трех пересекающихся прутьев, обтяжка – из грубой ткани.

В Европе, разумеется, тоже имели представление о подъемной силе ветра. Наверняка у греческих моряков не раз срывало парус и он трепыхался в воздухе, а у римских простофиль порывом сносило шляпу, и она взмывала на тесемках.

Какой-то особенной изобретательности для создания воздушного змея не требуется. И все-таки факт остается фактом: единственное, до чего додумался Запад, это “дракон” (греческое слово, обозначавшее змею).

Так примерно с 100 г. н.э. именовали римское кавалерийское знамя в форме современного сачка для бабочек, только подлиннее. “Дракон” надувался от ветра (указывая лучникам его направление), извивался и пугал неприятеля свистом. Ниспадающий цилиндрический хвост флюгера из ткани, извивающейся как туловище дракона, придавал всадникам уверенности в себе и создавал угрожающий вид, который придавал страх врагу.

Также флюгера указывали стрельцам направление и силу ветра. Но короткое древко – это не уходящая ввысь нить. По сравнению с восточными шедеврами идею “дракона” следует считать весьма приземленной.

Вообще же, согласно европейским традициям, изобретение воздушных змеев приписывается греческому математику Аркитасу Тарентскому, который около 400 г. до н.э. сконструировал деревянную птицу, основываясь на исследования полетов птиц. Считается, что его воодушевил увиденный китайский воздушный змей – птица.

Любопытны старинные записи о первых практических применениях воздушных змеев, в одной из них говорится, что в IX в. византийцы якобы поднимали на воздушном змее воина, который с высоты бросал в неприятельский стан зажигательные вещества.

В 906 г. киевский князь Олег воспользовался воздушными змеями при взятии Царьграда. Летопись говорит, что над неприятелем в воздухе появились “кони и люди бумажны, вооружены и позлащены”.

А в 1066 г. Вильгельм Завоеватель использовал воздушные змеи для военной сигнализации при покорении Англии. Но, к сожалению, о форме древних европейских змеев, об их конструктивных и летных свойствах не сохранилось никаких данных.

С парящим змеем земляков познакомил вернувшийся из Китая в 1295 г. неугомонный Марко Поло. Игрушка понравилась, но популярной не стала. Первый (незаконченный) европейский рисунок змея типа “тайская кобра” датируется 1326 г.

В 1405 г. появляется первое верное описание воздушного змея – в трактате по военной технологии. А на картинке 1618 г., изображающей жизнь голландского Миддельбурга, мы видим мальчишек, запускающих змеев знакомой нам и сегодня ромбовидной формы.

Но только к XVII в. воздушные змеи стали обычным явлением в Европе. В начале XVIII в. увлечение запуском воздушных змеев было уже чрезвычайно популярно. Воздушные змеи использовались в завораживающих зрелищах и различных шоу, а не только как безобидная игрушка для детей.

Таким образом, в Европе этот предмет не приобрел ни мистического, ни религиозного значения. Зато приобрел научное, правда, не сразу. В 1749 г. шотландский метеоролог Александр Вильсон поднял на высоту 3000 футов градусник.

Тремя годами позже Бенджамен Франклин в Филадельфии поставил знаменитый эксперимент с электричеством: во время грозы он запустил змея с прикрепленным к нему куском проволоки. От дождя все сразу же намокло. Результат: металлический ключ в руках Франклина заискрил. Открыв при помощи змея электрическую природу молнии, Франклин изобрел молниеотвод.

Воздушные змеи применялись для изучения атмосферного электричества великим русским ученым Михаилом Ломоносовым и английским физиком Исааком Ньютоном.

Ньютон, когда он был еще школьником, провел несколько фактически незафиксированных экспериментов касательно наиболее экономной формы воздушного змея.

В 1826 г. Джордж Покок запатентовал тележку, приводимую в движение воздушным змеем: она развивала скорость до 30 км/ч, и Покок пугал крестьян, разъезжая по окрестностям Бристоля на повозке без лошадей.

В 1847 г., когда протягивали переправу над Ниагарским водопадом, первую веревку с берега на берег (250 м) перебросили с помощью воздушного змея.

Возникало много и других идей: например, использовать змеев для спасения людей с тонущего корабля. Исследователи делали множество экспериментов связанных с подъемом всяческих грузов, а также людей. Начиная с 1894 г., воздушный змей систематически применяется для изучения верхних слоев атмосферы.

Значительное усовершенствование змея произвел австралийский ученый Лоренс Харграв в 90-х гг. XIX в. В 1893 г. Харгрейв создал змея в виде коробки без дна. Это было первое принципиальное усовершенствование конструкции с древнейших времен.

Летающие коробки Харграва явились не только большим толчком для развития “змейкового” дела, но и, несомненно, помогли при конструировании первых самолетов.

Но вскоре началась эра аэропланов и о змеях забыли. Хотя во время обеих мировых войн их использовали – на подводных лодках для улучшения обзора и в спасательных наборах летчиков для поднятия антенны радиоприемника.

Широкое применение воздушный змей нашел в метеорологических обсерваториях Германии, Франции и Японии. 3мей поднимался на очень большую высоту.

Например, в обсерватории Линдерберга (Германия) добились подъема воздушного змея более чем на 7000 м.

Первая радиосвязь через Атлантический океан была налажена с помощью коробчатого воздушного змея. Итальянский инженер Г. Маркони запустил в 1901 г. на острове Нью- Фаундлен большой воздушный змей, который летал на проволоке, служившей приемной антенной.

В начале XX в. работу над змеями продолжил капитан французской армии Сакконей. Он создал еще более совершенную конструкцию воздушного змея, являющуюся одной из лучших и по настоящее время.

Новая жизнь воздушного змея началась в 50-х гг., когда Фрэнсис Рогалло изобрел конструкцию без перекладин – распростертой в воздухе ее держал ветер. Это был параплан, стирающий грань между парашютом, дельтапланом и воздушным змеем.

Муниципальное казенное учреждение отдел образования администрации городского округа г. Нефтекамск Республики Башкортостан

Муниципальное общеобразовательное бюджетное учреждение

средняя общеобразовательная школа №8

городского округа город Нефтекамск

Республики Башкортостан

Историко-исследовательская работа

«Воздушный змей:

детская забава или практическая аэронавтика?»

Выполнил: Винокуров Антон 7А класс

МОБУ СОШ № 8

Руководитель: Насипова Г. У.

учитель физики.

г. Нефтекамск, 2014

Содержание

    Введение …………………………………………………………………… .3-5

    История воздушного змея ………………………………………………. .6-8

    Классификация (виды) воздушных змеев ………………………… …9-15

    16-19

    Заключение …………………………………………………………………..20

    Список литературы …………………………………………………………21

Введение

Мы с раннего детства знаем, что такое воздушный змей: как его запускать и как им управлять. Мы привыкли к его форме и красочности, но задумывались ли Вы, когда и для чего были изобретены змеи? В каких целях применялись и почему они летают? Знаете ли Вы, что воздушный змей без преувеличения можно назвать первоосновой всех летающих аппаратов и, что аэродинамика крыла самолетов держится на основе аэродинамики воздушного змея? Главная особенность воздушного змея – его простота. Он прост в изготовление и запуске, зато какого опыта набирается ребенок, играясь со змеем! Так же, интерес к змеям не уменьшается с возрастом человека. За много лет после появления первого змея, они приобрели новый облик, и теперь появилось новое поколение воздушных змеев – кайты. Кайтинг и кайтсерфинг уже давно популярен у любителей экстремального вида спорта.

Воздушные змеи - это целый мир, имеющий разноликие грани, мир творчества, мир науки, мир искусства. Все с раннего детства знают, что такое

воздушный змей: как его запускать и как им управлять. Поражают их форма и красочность, но задумывались ли Вы, когда и для чего были изобретены змеи? Изучив историю воздушных змеев, узнаем, что змеи применялись в научных исследованиях, в метеорологии для исследования верхних слоев атмосферы и аэрофотосъемках, для сбрасывания грузов. Активную роль воздушные змеи играют в авиамоделизме, подаче сигналов, а именно в спортивном ориентировании, развлекательных и спортивных играх.

Немецкая компания SkySails применила змей в качестве дополнительного источника энергии для грузовых судов, впервые опробовав его в январе 2008 года на судне MS BelugaSkysails. Испытания на этом 55 метровом корабле показали, что при благоприятных условиях расход топлива снижается на 30%.

Воздушный змей без преувеличения можно назвать первоосновой всех летающих аппаратов.

Тема моей работы «Воздушный змей: детская забава или практическая аэронавтика?».

А что же такое аэронавтика? Аэронавтика (воздухоплавание) - так называется искусство подниматься на воздух с помощью известных приспособлений и двигаться в определенном направлении.

Актуальность выбранной мною темы очевидна. С одной стороны это детская забава, которая требует большого воображения и способствует расширению кругозора. С другой стороны конструирование и запуск воздушных змеев для людей, которые относятся к этому не как к увлекательному занятию, дает возможность понять основные принципы полета всех летательных аппаратов вместе взятых. Изучить законы физики и аэродинамики, а также практическое их применение.

Первые упоминания о воздушных змеях встречаются ещё во II веке до н.э., в Китае (так называемый змей-дракон).

Долгое время змеи не находили практического применения. Со второй половины XVIII в. их начинают широко использовать при проведении научных исследований атмосферы. В 1749 г. А. Вильсон с помощью воздушного змея производил измерение температуры воздуха на высоте. В 1752 г. Б. Франклин провёл эксперимент, в котором с помощью змея выявил электрическую природу молнии и впоследствии благодаря полученным результатам изобрёл громоотвод. М.В. Ломоносов проводил аналогичные эксперименты и независимо от Франклина пришёл к тем же результатам.

Тема исследования : Воздушный змей: детская забава или практическая аэронавтика?

Цель исследования : Определить факторы, влияющие на запуск и полёт воздушного змея.

Объект исследования : Модель воздушного змея, условия местности и погоды, влияющие на полёт змея.

Предмет исследования : Качественные характеристики полёта воздушного змея.

Гипотеза исследования : подручными средствами можно создать летательные аппараты тяжелее воздуха.

Задачи:

Изучение истории воздушных змеев;

Рассмотрение видов воздушных змеев;

Исследование принципов полета змея.

Методы исследования : работа с научной литературой, интернет - ресурсами, подбор иллюстративного материала, его оформление, исследование, проведение пробных полётов с моделями змеев.

История воздушного змея

Воздушные змеи относятся к древнейшим летательным аппаратам тяжелее воздуха, изобретённым людьми. Нельзя сказать с определенностью кто и когда изобрел воздушного змея, и когда они впервые поднялись в воздух. Древнегреческие источники утверждают, что это произошло в IV веке до нашей эры, что честь их изобретения принадлежит Архитасу из Тарентума. Но одно известно доподлинно – в IV веке до нашей эры воздушные змеи были широко распространены в Китае. Полагают, что первые китайские воздушные змеи были сделаны из дерева. Они строились в виде рыб, птиц, жуков, раскрашивались в разные цвета. Самой распространенной фигурой была фигура змея – дракона. Отсюда, возможно, и пошло название «воздушный змей».

Они быстро распространились по странам Восточной Азии. Стали использоваться для решения военных задач. Существует легенда о том, что в 202 году до нашей эры генерал Хуан Тенг и его армия были окружены противниками, и им грозило полное уничтожение. Говорится, что случайный порыв ветра сорвал с головы генерала шляпу, и тогда к нему пришла идея создания большого количества воздушных змеев, снабженных трещётками и трубами. Враг в страхе бежал с поля боя под вой и оглушительный треск. Любопытны старинные записи о первых практических применениях воздушных змеев. В одной из них говорится, что в IX в. византийцы якобы поднимали на воздушном змее воина, который с высоты бросал в неприятельский стан зажигательные вещества. Так же в 559 году в королевстве Северный Вэй был задокументирован полёт человека на воздушном змее.

На Руси в 906 г. князь Олег при осаде Царьграда применил воздушный змей для устрашения неприятеля. А в 1066 г. Вильгельм Завоеватель использовал воздушные змеи для военной сигнализации при покорении Англии. Но, к сожалению, о форме древних европейских змеев, об их конструктивных и летных свойствах не сохранилось никаких данных. Долгое время ученые Европы недооценивали значение воздушного змея для науки. Только с середины XVIII в. воздушный змей начинает применяться при научных работах. В 1749 г. А. Вильсоном (Англия) змей был использован для подъема термометра с целью определения температуры воздуха на высоте. В 1752 г. ученый-физик В. Франклин воспользовался воздушным змеем для исследования молнии. Открыв при помощи змея электрическую природу молнии, Франклин изобрел громоотвод.

Воздушные змеи применялись для изучения атмосферного электричества великим русским ученым М. В. Ломоносовым и английским физиком И. Ньютоном. В 1804 году благодаря воздушному змею сэр Дж. Кейл сумел сформулировать основные законы аэродинамики. В 1825 году был осуществлен первый полет человека на змее. Это сделал английский ученый Д. Покок, подняв на змее на высоту нескольких десятков метров свою дочь Марту. В 1873 году А.Ф. Можайский поднимался на воздушном змее, буксируемом тройкой лошадей. Начиная с 1894 г., воздушный змей систематически применяется для изучения верхних слоев атмосферы. В 1895 г. при Вашингтонском бюро погоды была организована первая змейковая станция. В 1896 г. в Бостонской обсерватории была достигнута высота подъема коробчатого змея, равная 2000 м, а в 1900 г. там же змей был поднят на высоту 4600 м. В 1897 г. начаты работы с воздушными змеями и в России. Они велись в Павловской магнитно-метеорологической обсерватории, где в 1902 г. Было открыто специальное змейковое отделение.

Широкое применение воздушный змей нашел в метеорологических обсерваториях Германии, Франции и Японии. 3мей поднимался на очень большую высоту. Например, в обсерватории Линдерберга (Германия) добились подъема воздушного змея более чем на 7000 м. Первая радиосвязь через Атлантический океан была налажена с помощью коробчатого воздушного змея. Итальянский инженер Г. Маркони запустил в 1901 г. на острове Нью-Фаунден большой воздушный змей, который летал на проволоке, служившей приемной антенной. В 1902 году на крейсере «Лейтенант Ильин» провели успешные опыты по подъему наблюдателя на высоту до 300 метров с помощью поезда из воздушных змеев. При этом были использованы коробчатые змеи, конструкции которых разработалЛ. Харграв в 1892 году. В 1905-1910 годах на вооружении русской армии состоял змей оригинальной конструкции, созданной Сергеем Ульяниным. Целые взводы змеенавтов входили в состав как сухопутных, так и военно-морских частей, в том числе Черноморского флота Во время первой мировой войны войска различных стран и особенно Германии применяли для наблюдательных постов привязные воздушные шары, высота подъема которых, в зависимости от условий боя, достигала 2000 м. Они давали возможность наблюдать расположение противника в глубь фронта и через телефонную связь направлять огонь артиллерии. Когда же ветер становился слишком сильным, вместо воздушных шаров применяли коробчатые змеи. В зависимости от силы ветра составлялся поезд из 5-10 больших коробчатых змеев, которые прикрепляли к тросу на определенном расстоянии друг от друга на длинных проволоках. К тросу привязывали корзину для наблюдателя. При сильном, но довольно равномерном ветре наблюдатель поднимался в корзине на высоту до 800 м. Такой способ наблюдения имел то преимущество, что он позволял подойти ближе к передовым позициям противника. Воздушные змеи не так легко расстреливались, как воздушные шары, представлявшие собой очень большую мишень. Кроме того, выход из строя отдельного змея отражался на высоте подъема наблюдателя, но не вызывал его падения.

Воздушные змеи во время первой мировой войны использовали также для защиты важных военных объектов от нападения самолетов противника путем устройства заграждений, состоявших из маленьких привязных воздушных шаров и воздушных змеев, поднимавшихся до высоты 3000 м. С шаров и змеев спускались проволочные тросы, которые создавали для самолета противника большую опасность.

В наше время строительство воздушного змея – увлекательное занятие, создание и запуск их не потеряли и не потеряют своего значения. Теоритическая мысль изобретателей многих стран рождает все новые и новые конструкции воздушных змеев: плоских и коробчатых. Надувных и роторных. Среди тех змеев, с которыми вы познакомитесь, нет двух одинаковых – все они отличаются друг от друга внешним видом, летными качествами или технологией изготовления.

Классификация воздушных змеев

Классификация воздушных змеев точно не задана. Воздушные змеи могут быть большими или не очень. Существует очень большое разнообразие форм воздушных змеев. Древние змеи изготовлялись при помощи деревянных рамок и натянутыми на них листами шелка или бумаги. Почти все современные воздушные змеи делаются из углепластиковых пластмасс и синтетических тканей.

Плоские воздушные змеи подразделяются по аэродинамической конструкции на два вида:

Flat - плоские воздушные змеи. Самая древняя форма воздушных змеев. И самая простая. Образно представляют из себя плоскую пластину прямоугольной или любой другой формы (звезда, треугольник в виде проекции птицы и т.д), к которой подвязан леер при помощи уздечки.

Bowed - категория воздушных змеев, с земли очень напоминающая плоских. Однако данный вид воздушных змеев является дальнейшим развитием плоских в плане устойчивости. Для придания устойчивостиданные змеи имеют изгиб или излом в продольной оси, что как бы приподнимает концы крыла и создает v-образное крыло. Такое решение придает значительный запас устойчивости. Вильгельм Эдди запатентовал такую конструкцию воздушного змея в 1900 году.

По форме: плоские змеи в плане могут выполняться во всевозможных формах начиная от квадрата и заканчивая фантазией художника. Рассмотрим основные из них:

Прямоугольный воздушный змей является самым распространенным примером воздушных змеев из учебников, однако он мало отличается устойчивостью от своих "больших" собратьев. Змей имеет три планки: две из них служат диагоналями («крестом»), а третья находится вверху и скрепляет диагонали. По контуру будущего змея натягивают прочную нить, соединяющую все уголки, и наклеивают обтяжку из бумаги или ткани. Змей обязательно оснащается длинным и достаточно тяжелым хвостом для придания ему устойчивости в полете. Змеи подобной конструкции были распространены в Японии, на прямоугольное полотно наносились изображения драконов.

Diamond (bowed diamond) – ромбовидный змей . Каркас изготавливается в виде пересекающихся реек. Относится к категории bowed. Существует много схем для придания змею вогнутости, например использование центральной крестовины, где поперечные рейки идут под некоторым углом, или натягива- ние тетивы на поперечной рейке, что придает рейке изгиб подобно луку. При большой v-образности такому змею не нужен хвост, однако при значительном увеличении v-образности змей теряет в подъемной силе. Уздечка чаще всего подвязывается к продольной рейке в двух местах.

Delta (дельта, bowed delta) – змей, в плане напоминающий дельта-крыло. Каркас несколько сложнее, так как требуется не менее трех реек, которые жестко закреплены в виде треугольника (две консольные и одна поперечная). Особенность конструкции в том, что при полете давление ветра придает изгиб консольным рейкам и змей принимает v-образную форму. Дополнительную устойчивость придает так же купольность обшивки. При этом, чем сильнее дует ветер, тем устойчивее ведет себя змей. Эту форму получили модели спортивных управляемых воздушных змеев. Возможность управления достигается использованием двухлеерной схемы. Оба леера пилот держит в руках. Изменяя натяжение лееров добиваются управляемого полета.

Роккаку - этот шестиугольный японский змей (отсюда его название) родом из среднеяпонского региона Ниигата на побережье Японского моря. Имеет центральную рейку и две поперечных. Поперечным рейкам придается изогнутая форма (форма bowed), за счет этого змеи типа роккаку весьма устойчивы даже без хвостов. Это очень распространенная форма змея, так как проста в изготовлении.

Bermuda (бермудский) – воздушный змей как правило шестигранной формы, однако может иметь форму восьмигранника и даже более многогранной фигуры. Конструкция представляет собой несколько плоских реек, пересекающихся в центре. По периметру реек натянута тетива, придающая жесткость конструкции. Парус уже натягивается между рейками и тетивой. Очень часто каждую грань змея делают из разных цветов, чтобы получить более пеструю расцветку. Требует наличие длинного хвоста. Змей имеет одн име ное название с островом, где их традиционно запускали на Пасху как символ вознесения Христа.

Коробчатые воздушные змеи

Коробчатые змеи появились как результат развития плоских. Люди заметили, что вертикальные поверхности очень сильно влияют на стабильность полета змея. Так появился первый змей в виде коробки. Коробчатые змеи в большинстве своем не нуждаются в хвосте.

Ромбический - наиболее простой коробчатый змей, не сложен по устройству, устойчив в полёте и легко запускается. Основу его составляют четыре

продольные рейки (лонжероны). Между ними вставлены две крестовины, каждая из которых состоит из двух реек-распорок. Обтяжка змея изготавливается из двух полосок бумаги или синтетической ткани. Таким образом получаются две коробки - передняя и задняя. Змей данной конструкции был изобретен австралийским исследователем Лоуренсом Харгрейвом в 1893 году при попытках построить пилотируемый летательный аппарат.

Поттера - коробчатый воздушный змей, для увеличения подъемной силы имеет специальные открылки. Он состоит из четырех продольных реек (лонжеронов) и четырех парных поперечных реек-крестовин, двух коробок и двух открылков.

Бескаркасные воздушные змеи

К бескаркасным относятся змеи не имеющие жестких частей. Форму змей принимает, раздуваясь за счет набегающего потока воздуха. Отсюда два д стоинства этих змеев - вероятность поломки при падении равна нулю и компактность при транспортировке. Второе преимущество позволяет изготавливать змеев очень больших размеров.

Sled (сани) – это воздушный змей с не жестким каркасом. В полете его оболочка поддерживает форму за счет ветра, как бы надувается. Используются всего две продольные рейки, вшитые в оболочку, которые не соединяются между собой. Эти рейки поддерживают форму оболочки и не дают ей скомкаться. Змей такого типа довольно капризно себя ведет при порывистом ветре. Для устойчивого полета змею обязательно требуется длинный хвост. К преимуществам такого змея относятся простота изготовления и компактность при транспортировке, так как его можно свернуть в трубочку без необходимости сборки-разборки.

Sled foil – дальнейшее развитие змея предыдущей модели. В данной конструкции вообще нет жестких элементов. Жесткость куполу придают надуваемые набегающим потоком воздуха цилиндры. Создаваемого давления в сужающихся к задней кромке змея цилиндрах вполне достаточно, чтобы держать купол расправленным в полете. Однако у змея такой конструкции есть и недостатки, например, купол может запросто скомкаться при затихании ветра и это приведет к падению змея, даже если ветер поднимется вновь, купол самостоятельно уже не может расправиться. Ему так же присущи определенные трудности с запуском. Но неоспоримое преимущество того, что змей невозможно поломать, позволило данной конструкции продолжить свое развитие.

Super Sled foil – еще одно развитие "саней". Три надувные секции делают этот змей более устойчивым к сложениям. Так же позволяет изготовить этот змей значительных размеров и получить значительную тягу. Может быть использован для подъема предметов, в том числе фотоаппарата.

FlowForm – змей очень распространенной конструкции, так как является одним из самых устойчивых бескаркасных одностропных воздушных змеев. При правильной проработке в ровный ветер может летать без хвоста. Однако в сильный и порывистый ветер использование хвоста все же рекомендуется. Могут быть изготовлены действительно гигантских размеров, площадь в 3 кв.м считается самой обычной. Так же изготавливаются с большим количеством секций, шесть, восемь и даже больше.

Кайт Nasa Para Wing - результат исследований национального космического агентства США, которое явило свету довольно интересные однослойные бескаркасные кайты. Разработки велись в поиске оптимальных систем спуска космических аппаратов. Как "побочный" результат - кайт, который строят люди во всем мире. Ряд оригинальных решений делают эту модель несложной в изготовлении. Некоторые модели являются управляемыми. При многих достоинствах (низкой материалоемкости, большой тяге и т.д.) эти воздушные змеи обладают существенным недостатком - сравнительно низким аэродинамическим качеством, которое, впрочем, неуклонно повышается за счет дальнейшего совершенствования конструкции кайта.

Parafoil (Парафойл) - особый подкласс бескаркасных воздушных змеев. Змеи данного типа изготавливаются из воздухонепроницаемой ткани с замкнутыми внутренними пространствами и воздухозаборником, обращенным в сторону набегающего потока. Воздух, проникая в воздухозаборное отверстие, создает внутри замкнутого пространства змея избыточное давление и надувает воздушный змей подобно воздушному шару. Однако конструкция змея такова, что надуваясь, змей принимает определённую аэродинамическую форму, которая способна создать подъемную силу змея. Существует много разновидностей змеев - парафойлов: одностропные, двухстропные управляемые, четырёхстропные управляемые. Двухстропные в основном это пилотажные змеи, или кайты площадью до 3 кв.м. Четырёхстропные - это змеи достаточно большей площади от 4 кв.м, используемые в спорте в качестве двигательной силы (кайтинг). Одностропные - это змеи для развлечений, разнообразных конструкций и форм, могут даже изображать всевозможные предметы и животных.

Надувной - так же интересная модель является попыткой совместить достоинства парафойлов и каркасных моделей. Имеется так же оболочка, нотеперь она надувается не ветром, а при помощи насоса на земле (наподобие надувных кругов). Воздушный змей так же не имеет каркаса, но за счет избыточного давления внутри оболочки уже на земле имеет полетную форму. Опять же по аналогии с надувным кругом - змей не тонет в воде при падении, по этой причине используется в кайтинге при катании по водной поверхности.

Почему воздушные змеи летают?

Способность воздушных змеев держаться в воздухе и поднимать грузы объясняется тем, что они обладают подъемной силой. Приведем такой опыт. Если из окна движущегося автобуса или вагона высунуть руку с пластинкой (куском картона или фанеры), поставив ее вертикально, то можно будет почувствовать, что руку относит назад с какой-то силой. Эта сила возникает потому, что на пластинку набегает поток воздуха и оказывает на нее давление. Это давление будет больше, если увеличить размеры пластинки или скорость движения; на большой скорости эта сила может оказаться так велика, что высовывать руку окажется опасным. Силу давления на пластину встречного потока можно уменьшить во много раз, если пластину поставить ребром к потоку воздуха. Если же пластину поставить под небольшим углом, то руку начнет отклонять не только назад, но и вверх. Угол по отношению к потоку воздуха называется углом атаки (его принято обозначать α – альфа). Змеи летают при среднем угле атаки 10- 20°.

Так почему же взлетает воздушный змей?

На воздушного змея действуют четыре силы: сопротивление, подъемная сила, сила тяжести и подъемная сила. А В α F 2 F 3 F 1 (см рис).

На упрощённом чертеже линия АВ изображает разрез плоского воздушного змея. Предположим, что наш воображаемый воздушный змей взлетает справа налево под углом α – альфа к горизонту или набегающему потоку ветра. Рассмотрим, какие силы действуют на воздушный змей в полёте.

Плотная масса воздуха препятствует движению воздушного змея на взлете, другими словами, оказывает на него некоторое давление, обозначим его F1. Теперь построим так называемый параллелограмм сил и разложим силу F1 на две составляющие - F2 и F3. Сила F2 толкает воздушный змей от нас, а это значит, что при подъёме она снижает его первоначальную горизонтальную скорость. Следовательно, это сила сопротивления. Другая же сила (F3) увлекает воздушного змея вверх, поэтому назовем её подъёмной. Мы определили, что на воздушного змея действуют две силы: сила сопротивления F2 и подъемная сила F3.

Поднимая воздушного змея в воздух (буксируя её за леер), мы как бы искусственно увеличиваем силу давления на поверхность воздушного змея, то есть силу F1. И чем быстрее мы разбегаемся, тем больше увеличивается эта сила. Но сила F1, как мы определили, раскладывается на две составляющие: F2 и F3. Вес воздушного змея постоянный, а действию силы F2 препятствует леер, увеличивается подъемная сила – воздушный змей взлетает.

Скорость ветра возрастает с высотой, вот почему при запуске воздушного змея стараются поднять его на такую высоту, где ветер мог бы поддерживать модель в одной точке. В полёте воздушный змей всегда находится под определенным углом к направлению ветра.

Сила сопротивления – создается движением воздуха, который обтекает змея.

Подъемная сила – это часть сопротивления, которая превращается в силу, направленную вверх.

Сила притяжения обусловлена весом змея и приложена в точке, которую называют центром тяжести.

Движущая сила сообщается змею леером, действующим как мотор. Змей полетит, если линии действия всех этих сил пересекутся в центре тяжести. Иначе полет змея будет нестабильным. Чтобы выдержать эти требования, поверхность змея должна быть наклонена по отношению к ветру под правильным углом. Продольная устойчивость змея обеспечивается хвостом или формой аэродинамической поверхности, поперечная – килевыми плоскостями, устанавливаемыми параллельно лееру, или изогнутостью и симметричностью аэродинамической поверхности. При изготовлении змеев об этих факторах не следует забывать. Устойчивость полета змея зависит также от положения центра тяжести воздушного змея. Хвост смещает центр тяжести воздушного змея вниз и тормозит колебания змея, если ветер порывистый, неровный.

Проведем расчет подъемной силы воздушного змея по формуле:

F з =K*S*V*N*cos(a), где

К=0,096 (коэффициент),

S - несущая поверхность (м 2),

V - скорость ветра (м/с),

N - коэффициент нормального давления (см. таблицу)

Скорость ветра, V, м/с 1 2 4 6 7 8 9 10 12 15

Коэффициент нормального давления N, кг/м 2

0,14 0,54 2,17 4,87 6,64 8,67 10,97 13,54 19,5 30,47

a - угол наклона.

Пример.

Исходные данные:

S =0,5 м2;

V =6 м/с,

a =45°.

N =4,87 кг/м 2 . (см. таблицу)

Подставляем величины в формулу, получаем:

Fз=0,096*0,5*6*4,87*0,707=1 кг.

Расчёт показал, что этот змей будет подниматься вверх только в том случае, если его вес не превысит 1 кг. Расчет подъемной силы мы провели в старой системе единиц (кг*с, килограмм-сила), а не в системе СИ (Н, Ньютон). Дело в том, что в повседневной жизни нам проще оценивать силу килограммами, а не ньютонами, т.е. мы знаем, сколько усилий нам необходимо приложить, чтобы поднять сумку с 5 кг картофеля. В случае с воздушными змеями тоже самое. Для справедливости приведем перевод килограмм-силы в систему СИ: 1 кг*с = 9,81 Н. Но не всё так просто, как это выглядит со стороны. Скорость ветра узнать весьма трудно, даже если запускать змея, держа в руках анемометр, результаты не будут правдивыми. Скорость ветра изменяется с высотой. Да и угол наклона немного изменяется в процессе полёта. Только практика поможет запустить бумажного змея.

Таким образом, рассмотрев основные принципы полета воздушного змея, можно смело сказать, что более простой в конструировании и управлении воздушный змей является прототипом более сложных летательных аппаратов.

Многие конструкторы, ранее увлекавшиеся змейковым делом, перешли к работе над самолетами. Но их опыт постройки змеев не прошел бесследно. Он, безусловно, сыграл свою роль в истории авиации на первой стадии развития самолета.

ЗАКЛЮЧЕНИЕ

Рассмотрев историю возникновения воздушного змея, изучив основные виды и конструкцию, проведя сравнительный анализ, я пришла к следующему выводу.

В наше время воздушный змей, являясь детской забавой, требует большого воображения и способствует расширению кругозора. В процессе выбора типа и формы змея развиваются склонности к дизайну, у конструктора появляется возможность для художественного самовыражения в процессе придумывания эмблем и других элементов украшения, поэтому полет воздушного змея – это всегда захватывающее зрелище.

Для других это является захватывающим видом спортом. По всему миру создаются Клубы и сообщества, объединяющие любителей воздушных змеев - как конструкторов, так и просто запускающих. Одним из известных является KONE - Клуб Воздушных Змеев Новой Англии, входящий в состав Американской Ассоциации Кайтинга. Кто-то рассматривает запуск воздушного змея как добрую традицию, например в Японии.

За рубежом воздушные змеи чрезвычайно популярны среди детей и молодежи. Особенно ими увлекаются на Кубе, о. Бали. Часто можно видеть, как дети, даже находясь на пляже, не расстаются со своим любимым занятием - в воздухе над морем парят змеи самой разнообразной конструкции, самых ярких цветов.В наши дни строительство змеев не может иметь ни оборонного, ни научного значения. Так как с развитием авиации их роль в этих сферах уменьшилась.

Конструирование и запуск воздушных змеев для людей, которые относятся к этому не как к развлечению, помогает понять основные принципы полета всех летательных аппаратов вместе взятых. Змейковое дело стало одним из разделов первоначальной авиационной подготовки школьников, а воздушные змеи - полноправными летательными аппаратами наряду с моделями самолетов и планеров, так как позволяют изучить законы физики, аэродинамики и практическое их применение.

Такой подход к воздушным змеям является начальной ступенью для ребят, которые планируют связать в дальнейшем свою жизнь с конструированием или эксплуатированием летательных аппаратов. Без знаний расчетов, без учета особенностей нижних слоев атмосферы, направления ветра и т.д. не запустить как воздушного змея, так и модели планера или самолета

Литература

1. Ермаков А.М. Простейшие авиамодели: Кн. Для учащихся 5 - 8 кл. сред. шк. М.: Просвещение, 1989, - 144 с.

2. Энциклопедия самоделок. – М.:АСТ – ПРЕСС, 2002. – 352.: ил. – (Сделай своими руками).

3. Рожов В.С. Авиамодельный кружок. Для руководителей кружков школ и внешкольных учреждений М.: Просвещение, 1986.-144с.

4. Ермаков А. М. «Простейшие авиамодели», 1989

5. «Факультативный курс физики» - М: Просвещение, 1998г.

6. А.А.Пинский, В.Г.Разумовский “Физика и Астрономия” - Просвещение, 1997г.

7. Энциклопедия для детей. Том 14. Техника. Гл. ред. М.Д. Аксёнова. - М.:

Аванта+, 2004.

Интернет- ресурсы:

1. http://media.aplus.by/page/42/

2. http://sfw.org.ua/index.php?cstart=502&

3.http://www.atrava.ru/08d36bff22e97282f9199fb5069b7547/news/22/news -17903

4. http://www.airwar.ru/other/article/engines.html

5. http://arier.narod.ru/avicos/l-korolev.htm

6. http://www.library.cpilot.info/memo/beregovoy_gt/index.htm

7. http://aviaclub33.ru/?page_id=231

8. http://sitekd.narod.ru/zmey_history.html

9. http://sitekd.narod.ru/zmey_history.html