Небесное тело которое не имеет твердой поверхности. КАк называются небесные тела,которые сами не светятся,а отражают свет звёзд? Звукобуквенный анализ некоторых названий небесных тел солнечной системы

Чтобы выяснить, существуют ли небесные тела, которые светятся сами, сначала необходимо понять, из каких небесных тел состоит Солнечная система. Солнечная система – это планетная система, в центре которой находится звезда – Солнце, а вокруг нее 8 планет: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун. Чтобы небесное тело назвать планетой, оно должно соответствовать таким требованиям
Делать вращательные движения вокруг звезды.
Иметь форму в виде сферы, за счет достаточной гравитации.
Не иметь вокруг своей орбиты других крупных тел.
Не быть звездой.

Объекты, как правило, образуют сферы. Если они достаточно массивны, они преодолеют силы, препятствующие этому. Сегодня мы все еще смотрим на звезды, планеты и их луны как на сферические тела. Но меньшие небесные тела, такие как астероиды и кометы, часто имеют неправильную форму и, как правило, больше похожи на картофель.

Форма тела определяется взаимодействием его силы тяжести и прочности. Малые астероиды и кометы имеют небольшую гравитацию, чего недостаточно, чтобы заставить их более крупные породы в сферическое распределение. Но гравитация значительно больших лун и планет настолько сильна, что она превращает эти небесные тела в сферы. Конечно, на поверхности планет, таких как горы и долины, есть еще неравномерные объекты, но они становятся меньше по мере увеличения гравитации.

Планеты не излучают свет, они могут только отражать попадающие на них лучи Солнца. Поэтому нельзя сказать, что планеты – это небесные тела, которые светятся сами. К таким небесным телам относятся звезды. Солнце – источник света на Земле Небесные тела, которые светятся сами – это звезды. Самая ближняя звезда к Земле – это Солнце. Благодаря его свету и теплу, все живое может существовать и развиваться. Солнце представляет собой центр, вокруг которого вращаются планеты, их спутники, астероиды, кометы, метеориты и космическая пыль.

Независимо от материального состава небесного тела, диаметр в несколько сотен миль достаточен для создания сферической формы - самые крупные астероиды, Церера и Веста, уже имеют ярко выраженную круглую форму. Форма небесных тел - не идеальная. Вращение - то есть вращение вокруг собственной оси - также играет важную роль в отношении формы небесных тел. Например, астероид Клеопатра описывает полное вращение всего за 3 часа и, следовательно, имеет удлиненную форму гантели: она составляет 135 миль в длину с диаметром всего около 56 миль.

Большие планеты тоже деформируются через их вращение. Чем быстрее вращается планета, тем шире она становится на экваторе и льстит на полюсах. Наша Земля тоже не идеальная сфера. Его диаметр над полюсами на 5 миль меньше, чем на экваторе. Современные исследования Вселенной подтверждают, что в материи, ее компонентах и ​​небесных телах есть великая энергия. Аллах может уничтожить его и воссоздать. Ученые обнаружили различные формы мощной энергии, которые текут на небесах и на земле.

Солнце кажется твердым сферическим объектом, поскольку, когда на него смотришь, его контуры выглядят достаточно четкими. Однако оно не имеет твердой структуры и состоит из газов, основной среди которых водород, также присутствуют и другие элементы.

Чтобы увидеть, что Солнце не имеет четких контуров, надо посмотреть на него при затмении. Тогда можно заметить, что его окружает движущая атмосфера, которая в несколько раз превышает его диаметр. При обычном сиянии этот ореол не виден из-за яркого света. Таким образом, Солнце не имеет точных границ и находится в газообразном состоянии. Звезды Количество существующих звезд неизвестно, они расположены на огромном расстоянии от Земли и видны, как маленькие точечки. Звезды - это небесные тела, которые светятся сами. Что это означает? Звезды – раскаленные шары, состоящие из газа, в которых происходят термоядерные реакции. Поверхности их имеют разную температуру и плотность. Размерами звезды также отличаются между собой, при этом они больше и массивнее планет. Есть звезды, размеры которых превышают размеры Солнца, а есть и наоборот.

Сильная ядерная энергия: эта энергия объединяет субатомные частицы; который включает протоны, электроны и нейтроны. Слабая энергия нуклона: эта ядерная энергия вызывает определенные формы радиоактивного распада. Это энергия, которая связывает атомы внутри материи и которая также дает каждому ее соответствующие черты. Гравитация: это самая слабая форма энергии, известная нам, но в конечном счете является фокальной формой энергии, поскольку она удерживает все небесные тела в их соответствующих положениях. Электромагнитная энергия. . В этих стихах Аллах утверждает, что солнце движется в определенном направлении.

Звезда состоит из газа, в большей мере – водорода. На поверхности ее, от высокой температуры, молекула водорода распадается на два атома. Атом состоит из протона и электрона. Однако атомы под влиянием высоких температур «отпускают» свои электроны, в результате получается газ, который называется – плазма. Атом, оставшийся без электрона, называют ядром. Как звезды излучают свет Звезда, за счет гравитационной силы, старается сама себя сжать, в результате чего в центральной ее части сильно поднимается температура. Начинают происходить ядерные реакции, в результате образуется гелий с новым ядром, которое состоит из двух протонов и двух нейтронов. В результате образования нового ядра, выделяется большое количество энергии. Частицы-фотоны выделяются как избыток энергии, – они же и несут свет. Этот свет оказывает сильное давление, которое исходит из центра звезды, в результате получается равновесие между исходящим из центра давлением и гравитационной силой

Раньше считалось, что солнце неподвижно. Современные космологи и астрономы подтвердили, что солнце движется в определенном направлении. Все планеты в этой солнечной системе движутся, как спутники. Орбита Земли концентрична по орбитам планет. На арабском языке слово «Хубук» имеет более одного значения.

Совершенство в создании: астрономы подсчитали, что во Вселенной насчитывается двести миллиардов галактик и около семидесяти миллиардов триллионов звезд. 19 Каждая галактика изменяется по своим размерам, форме, плотности, скорости, с которой она движется по своей оси, ее расстоянию от нас, и расстояние каждого от другого, пройденные им этапы, количество звезд и жизнь каждой из их звезд. Эти удивительные цифры относительно числа галактик и звезд в известной части Вселенной составляют всего 10% всей вселенной. Должна быть сила, которая держит все это вместе, иначе она рухнет и попадет в хаос.

  • Это также относится к вещи, которая прекрасно сочетается и интегрируется.
  • Далеко удаленный Аллах от каждого несовершенства, Кто сказал.
Это также относится к орбитам, каждое небесное тело плавает в: удивительной вещи, которая сбивала с толку ученых, - это огромное количество галактик в известной части Вселенной.

Таким образом, небесные тела, которые светятся сами, а именно звезды светятся за счет выделения энергии при ядерных реакциях. Эта энергия направлена на сдерживание гравитационных сил и на излучение света. Чем массивнее звезда, тем больше выделяется энергии и тем ярче светит звезда. Кометы Комета состоит из ледяного сгустка, в котором присутствуют газы, пыль. Ядро ее не излучает света, однако при приближении к Солнцу ядро начинает таять и частичками пыли, грязи, газами выбрасывается в космическое пространство. Они и образуют своеобразное туманной облако вокруг кометы, которое называется – кома.

Это доказывает, что эта вселенная работает в совершенной системе. Совершенное различие между светом, выделяемым светящимся, огненным телом и светом, отраженным от солнца темным холодным телом, которое затем отражается в постоянной и устойчивой манере, упоминалось в Коране более четырнадцати столетий назад! Это доказывает, что Коран является Божественным Откровением от Аллаха.

На протяжении всего древнего мира люди проявляли неизгладимое увлечение движением небесных тел. Другие ранние наблюдатели за небом, в том числе китайцы, вавилоняне и майя, фиксировали точные наблюдения пяти видимых планет Меркурия, Венеры, Марса, Юпитера и Сатурна. Рассмотрение этих вопросов вызывает два важных вопроса. Почему доисторические люди так намеревались наблюдать периодические движения небесных тел? И почему астрономические устройства наблюдения найдены на многих священных местах мира?

Нельзя сказать, что комета – это небесное тело, которое само светится. Основной свет, который она излучает, это отраженный солнечный свет. Находясь вдали от Солнца, света кометы не видно и, только приближаясь и получая солнечные лучи, она становится видимой. Сама комета излучает небольшое количество света, за счет атомов и молекул комы, которые выделяют полученные ими кванты солнечного света. «Хвост» кометы – это «рассыпающаяся пыль», которая подсвечивается Солнцем. Метеориты Под действием гравитации на поверхность планеты могут падать твердые космические тела, которые называются метеоритами. Они не сгорают в атмосфере, а при прохождении через нее сильно нагреваются и начинают излучать яркий свет. Такой светящийся метеорит называется метеором. Под напором воздуха метеор может раздробиться на множество мелких кусочков. Хоть он и сильно нагревается, внутренняя его часть обычно остается холодной, поскольку за столь короткое время, которое он падает, не успевает нагреться полностью. Можно сделать вывод, что небесные тела, которые светятся сами – это звезды. Только они способны за счет своего строения и происходящих внутри процессов излучать свет. Условно, можно сказать, что метеорит – небесное тело, которое само светится, однако это становится возможным только при попадании его в атмосферу.

Археоастрономы - те ученые, которые занимаются изучением древних астрономий, предложили несколько ответов на эти вопросы. Одно из объяснений состоит в том, что древние люди, глубоко озадаченные природой существования, стремились найти смысл в упорядоченном движении небес. Наблюдая за небесными телами и интегрируя человеческую деятельность с их надежными циклическими движениями, люди смогли жить в гармонии с сверхъестественными влияниями, пронизывающими вселенную. Ночное небо было грандиозным учебником, из которого ранние люди приобрели глубокий смысл циклического времени, порядка и симметрии и предсказуемости природы.


Федеральное агентство по образованию ГОУ ВПО Уральский государственный горный университет.
Факультет ИСП.
    Виды космических объектов
    Контрольная работа по дисциплине
    Концепции Современного Естествознания
    Студент: Малахов Я.И. Группа: ЦЭМТ-11-1
    Преподаватель: Адриановский Б.П.
    Екатеринбург – 2011г.

Ведение

Космический объект - небесное тело (астрономический объект) или космический аппарат находящиеся за пределами земной атмосферы в космическом пространстве.

К естественным космическим объектам относятся звёзды, планеты и их естественные спутники, астероиды, кометы и т. п. Искусственные космические объекты - космические аппараты, последние ступени ракет-носителей и их части.

Классификация названий небесных тел Солнечной системы

Другое объяснение того, почему древние наблюдали за небесами, было предложено мифологией. В какой-то давно забытой эпохе возникла знаменательная идея о том, что небесные тела представляли богов и богинь, способных направлять, влиять или вмешиваться в жизнь человека. К тому времени, когда астрономические наблюдения проводились в древней Месопотамии и Египте, был прочно установлен пантеон небесных богов и богинь с каждым богом или богиней, обладающим властью над определенной областью человеческого опыта.

В данной работе мы постараемся рассмотреть все видовое разнообразие астрономических объектов, представленных в нашей Вселенной.

Общая характеристика астрономических объектов.

Небесное тело (или точнее астрономический объект) - это материальный объект, естественным образом сформировавшийся в космическом пространстве. К небесным телам можно отнести кометы, планеты, метеориты, астероиды, звёзды и прочее. Небесные тела изучает астрономия.
Размеры небесных тел разные - от огромных до крошечных. Самыми большими являются, как правило, звёзды, самыми маленькими - метеориты. Небесные тела объединяют в системы в зависимости от того, что эти тела собой представляют.

Изучение названий небесных тел солнечной системы

Наблюдение за движениями небес было для понимания поведения богов и богинь. Оба объяснения кажутся разумными. Другие ответы, предлагаемые археоастрономами, являются не более чем необоснованной гипотезой. Одним из примеров таких ошибочных предположений является идея, что астрономические наблюдения использовались ранними людьми в первую очередь для подготовки сельскохозяйственного календаря. Полагают, что такой календарь определит точные дни в году, когда будут посажены семена и когда урожай должен быть собран.

Звезды

Звезда? - небесное тело, в котором идут, шли или будут идти термоядерные реакции. Но чаще всего звездой называют небесное тело, в котором идут в данный момент термоядерные реакции. Солнце - типичная звезда спектрального класса G. Звёзды представляют собой массивные светящиеся газовые (плазменные) шары. Образуются из газово-пылевой среды (главным образом из водорода и гелия) в результате гравитационного сжатия. Температура вещества в недрах звёзд измеряется миллионами кельвинов, а на их поверхности - тысячами кельвинов. Энергия подавляющего большинства звёзд выделяется в результате термоядерных реакций превращения водорода в гелий, происходящих при высоких температурах во внутренних областях. Звёзды часто называют главными телами Вселенной, поскольку в них заключена основная масса светящегося вещества в природе. Примечательно и то, что звёзды имеют отрицательную теплоёмкость.

Невооружённым взглядом (при хорошей остроте зрения) на небе видно около 6000 звёзд, по 3000 в каждом полушарии. Все видимые с Земли звёзды (включая видимые в самые мощные телескопы) находятся в местной группе галактик.

Самая старая мертвая галактика

Но давайте ставим под сомнение эту идею. Действительно ли древние люди нуждались в сложных астрономических наблюдениях, чтобы рассказать им, когда нужно сажать семена? Могут ли они не просто взять свои сигналы от местных растений вокруг них? Огромное количество доказательств, собранных как из древнего фольклора, так и из современных исследований, указывает на то, что люди всегда наблюдали жизненные циклы диких растений, чтобы определить, когда подготовить землю и посадить семена. Люди восприняли эти сигналы от диких растений в районах мира, где подробные астрономические наблюдения никогда не проводились.

Виды звезд

Основная (гарвардская) спектральная классификация звёзд

Коричневые карлики

Коричневые карлики это тип звезд, в которых ядерные реакции никогда не могли компенсировать потери энергии на излучение. Долгое время коричневые карлики были гипотетическими объектами. Их существование предсказали в середине XX в., основываясь на представлениях о процессах, происходящих во время формирования звезд. Однако в 2004 году впервые был обнаружен коричневый карлик. На сегодняшний день открыто достаточно много звезд подобного типа. Их спектральный класс М - T. В теории выделяется ещё один класс - обозначаемый Y.

В тех регионах, где такие наблюдения были сделаны, люди использовали местные сигналы растений задолго до того, как астрономические наблюдательные устройства когда-либо были установлены. Кроме того, хотя структурные ориентиры многих доисторических обсерваторий указывают на определенные астрономические периоды, которые совпадают с сельскохозяйственным циклом, эти периоды весьма точны; они происходят каждый год в одно и то же время. Однако посадка семян неточна. Это не всегда делается в тот же день, но колеблется в зависимости от разных климатических условий каждого года.

Белые карлики

Вскоре после гелиевой вспышки «загораются» углерод и кислород; каждое из этих событий вызывает сильную перестройку звезды и её быстрое перемещение по диаграмме Герцшпрунга - Рассела. Размер атмосферы звезды увеличивается ещё больше, и она начинает интенсивно терять газ в виде разлетающихся потоков звёздного ветра. Судьба центральной части звезды полностью зависит от её исходной массы: ядро звезды может закончить свою эволюцию как белый карлик (маломассивные звёзды), в случае, если её масса на поздних стадиях эволюции превышает предел Чандрасекара - как нейтронная звезда (пульсар), если же масса превышает предел Оппенгеймера - Волкова - как чёрная дыра. В двух последних случаях завершение эволюции звёзд сопровождается катастрофическими событиями - вспышками сверхновых.
Подавляющее большинство звёзд, и Солнце в том числе, заканчивают эволюцию, сжимаясь до тех пор, пока давление вырожденных электронов не уравновесит гравитацию. В этом состоянии, когда размер звезды уменьшается в сотню раз, а плотность становится в миллион раз выше плотности воды, звезду называют белым карликом. Она лишена источников энергии и, постепенно остывая, становится тёмной и невидимой.

Более продолжительная, чем обычно, зима, за которой следует более поздняя, ​​чем обычно, весна, будет естественным образом влиять на дикие растения, чтобы сбросить свои семена позднее чем в прошлом году. Люди, принимающие свои сигналы от мира растений, также задерживают собственную посадку, чтобы быть в гармонии с сезонными циклами.

Кроме того, различные культивируемые растения посеяны в разное время года, с ранней весны до конца лета, а доисторические астрономические обсерватории определенно не отмечали все эти отдельные времена посадки. Также им не нужно было указывать время сбора урожая. Природа, конечно же, не нуждается в астрономических обсерваториях, чтобы сказать ей, когда созрело яблоко; яблоко просто падает на землю. Фермеры также не нуждаются в астрономических наблюдениях для указания времени их сбора. Будучи ежедневно на полях, выращивающих свои растения, фермеры знали бы, когда собирать каждый конкретный хлеб и овощи.

Красные гиганты

Красные гиганты и сверхгиганты - это звёзды с довольно низкой эффективной температурой (3000 - 5000 К), однако с огромной светимостью. Типичная абсолютная звёздная величина таких объектов?3m-0m(I и III класс светимости). Для их спектра характерно присутствие молекулярных полос поглощения, а максимум излучения приходится на инфракрасный диапазон.

Они узнали это не от наблюдения за небом над их головами, а непосредственно от растений, которые они выращивали. Наконец, и самое главное, многие древние астрономические обсерватории использовались для установления многочисленных дней солнечного года, которые не имеют ничего общего с сельскохозяйственным календарем. Например, летнее солнцестояние происходит в середине вегетационного периода, а зимнее солнцестояние приходит в самую холодную часть зимы, когда земля замерзает, а культуры не растут. Эти дни были чрезвычайно важны для древних людей.

Переменные звёзды

Переменная звезда - это звезда, за всю историю наблюдения которой хоть один раз менялся блеск. Причин переменности много и связаны они могут быть не только с внутренними процессами: если звезда двойная и луч зрения лежит или находится под небольшим углом к полю зрения, то одна звезда, проходя по диску звезды, будет его затмевать, также блеск может измениться, если свет от звезды пройдет сквозь сильное гравитационное поле. Однако в большинстве случаев переменность связана с нестабильными внутренними процессами. В последней версии общего каталога переменных звезд принято следующее деление:
Эруптивные переменные звёзды - это звёзды, изменяющие свой блеск в силу бурных процессов и вспышек в их хромосферах и коронах. Изменение светимости происходит обычно вследствие изменений в оболочке или потери массы в форме звёздного ветра переменной интенсивности и/или взаимодействия с межзвёздной средой.
Пульсирующие переменные звёзды - это звёзды, показывающие периодические расширения и сжатия своих поверхностных слоёв. Пульсации могут быть радиальными и не радиальными. Радиальные пульсации звезды оставляют её форму сферической, в то время как не радиальные пульсации вызывают отклонение формы звезды от сферической, а соседние зоны звезды могут быть в противоположных фазах.
Вращающиеся переменные звёзды - это звёзды, у которых распределение яркости по поверхности неоднородно и/или они имеют неэлипсоидальную форму, вследствие чего при вращении звёзд наблюдатель фиксирует их переменность. Неоднородность яркости поверхности может быть вызвана наличием пятен или температурных или химических неоднородностей, вызванных магнитными полями, чьи оси не совпадают с осью вращения звезды.
Катаклизмические (взрывные и новоподобные) переменные звёзды . Переменности этих звёзд вызвана взрывами, причиной которых являются взрывные процессы в их поверхностных слоях (новые) или глубоко в их недрах (сверхновые).
Затменно-двойные системы.
Оптические переменные двойные системы с жёстким рентгеновским излучением
Новые типы переменных - типы переменности, открытые в процессе издания каталога и поэтому не попавшие в уже изданные классы.

Поскольку они не имеют никакого отношения к сельскохозяйственному циклу, они заставляют нас игнорировать существующую археоастрономическую теорию о том, что ранние фермеры использовали доисторические обсерватории в качестве индикаторов даты посадки и сбора урожая.

Белый карлик - пульсар

Почему же тогда древние люди так заботились о точном наблюдении за различными небесными объектами? И почему они ориентировали так много их священных структур в соответствии с движениями солнца, луны, планет и разных звезд? Рассмотрим некоторые из данных современной астрономии и геофизики о влиянии небесных тел.

Новые

Новая звезда - тип катаклизмических переменных. Блеск у них меняется не так резко, как у сверхновых (хотя амплитуда может составлять 9m): за несколько дней до максимума звезда лишь на 2m слабее. Количество таких дней определяет, к какому классу новых относится звезда:
Очень быстрые, если это время (обозначаемое как t2) меньше 10 дней.
Быстрые - 11
Очень медленные: 151
Предельно медленные, находящие вблизи максимума годами.

Эти поля сильно влияют на электромагнитные поля Земли и все живое на планете. Десятилетия исследований в этой области продолжают демонстрировать, что метаболические процессы в живых организмах ориентированы на астрономические периодичности, такие как вращение Земли на ее оси, революция Земли вокруг Солнца и окружающая луна Земли, Действительно, в настоящее время считается, что нет физиологического процесса, который не проявляет циклических изменений и что все организмы на Земле содержат метаболические часы, которые вызывают существенные внутренние биологические действия с соответствующими интервалами, связанными с геоцелевыми циклами.

Существует зависимость максимума блеска новой от t2. Иногда эту зависимость используют для определения расстояния до звезды. Максимум вспышки в разных диапазонах ведет себя по-разному: когда в видимом диапазоне уже наблюдается спад излучения, в ультрафиолете все ещё продолжается рост. Если наблюдается вспышка и в инфракрасном диапазоне, то максимум будет достигнут только после того, как блеск в ультрафиолете пойдет на спад. Таким образом, болометрическая светимость во время вспышки довольно долго остается неизменной.

В нашей Галактике можно выделить две группы новых: новые диска (в среднем они ярче и быстрее), и новые балджа, которые немного медленнее и, соответственно, немного слабее.

Сверхновые

Сверхновые звёзды - звёзды, заканчивающие свою эволюцию в катастрофическом взрывном процессе. Термином «сверхновые» были названы звёзды, которые вспыхивали гораздо (на порядки) сильнее так называемых «новых звёзд». На самом деле, ни те, ни другие физически новыми не являются, всегда вспыхивают уже существующие звёзды. Но в нескольких исторических случаях вспыхивали те звёзды, которые ранее были на небе практически или полностью не видны, что и создавало эффект появления новой звезды. Тип сверхновой определяется по наличию в спектре вспышки линий водорода. Если он есть, значит сверхновая II типа, если нет - то I типа

Гиперновые

Гиперновая - коллапс исключительно тяжёлой звезды после того, как в ней больше не осталось источников для поддержания термоядерных реакций; другими словами, это очень большая сверхновая. С начала 1990-х годов были замечены столь мощные взрывы звёзд, что сила взрыва превышала мощность взрыва обычной сверхновой примерно в 100 раз, а энергия взрыва превышала 1046 джоулей. К тому же многие из этих взрывов сопровождались очень сильными гамма-всплесками. Интенсивное исследование неба нашло несколько аргументов в пользу существования гиперновых, но пока что гиперновые являются гипотетическими объектами. Сегодня термин используется для описания взрывов звёзд с массой от 100 до 150 и более масс Солнца. Гиперновые теоретически могли бы создать серьёзную угрозу Земле вследствие сильной радиоактивной вспышки, но в настоящее время вблизи Земли нет звёзд, которые могли бы представлять такую опасность. По некоторым данным, 440 миллионов лет назад имел место взрыв гиперновой звезды вблизи Земли. Вероятно, короткоживущий изотоп никеля 56Ni попал на Землю в результате этого взрыва.

Нейтронные звёзды

У звёзд более массивных, чем Солнце, давление вырожденных электронов не может сдержать сжатие ядра, и оно продолжается до тех пор, пока большинство частиц не превратится в нейтроны, упакованные так плотно, что размер звезды измеряется километрами, а плотность в 280 трлн. раз превышает плотность воды. Такой объект называют нейтронной звездой; его равновесие поддерживается давлением вырожденного нейтронного вещества.

Составные объекты.

Звездные системы

Звёздные системы могут быть одиночными и кратными: двойными, тройными и большей кратности. В случае если в систему входит более десяти звезд, то принято её называть звёздным скоплением. Двойные (кратные) звёзды очень распространены. По некоторым оценкам более 70 % звёзд в галактике кратные. Так среди 32 ближайших к Земле звёзд 12 кратных, из которых 10 двойных, в том числе и самая яркая из визуально наблюдаемых звёзд Сириус. В окрестностях 20 парсек от Солнечной системы из более 3000 звёзд, около половины - двойные звёзды всех типов.

Двойные звёзды

Двойная звезда, или двойная система - две гравитационно-связанные звезды, обращающиеся по замкнутым орбитам вокруг общего центра масс. C помощью двойных звёзд существует возможность узнать массы звёзд и построить различные зависимости. А не зная зависимости масса - радиус, масса - светимость и масса - спектральный класс, практически ничего невозможно сказать ни о внутреннем строении звёзд, ни об их эволюции.

Но двойные звёзды не изучались бы столь серьёзно, если бы все их значение сводилось к информации о массе. Несмотря на многократные попытки поиска одиночных чёрных дыр, все кандидаты в черные дыры находятся в двойных системах. Звёзды Вольфа - Райе были изучены именно благодаря двойным звёздам.

Тесные двойные звёзды (Тесная Двойная Система - ТДС)

Среди двойных звезд выделяют так называемые тесные двойные системы (ТДС): двойные системы, в которых происходит обмен веществом между звездами. Расстояние между звездами в тесной двойной системе сравнимо с размерами самих звёзд, поэтому в таких системах возникают более сложные эффекты, чем просто притяжение: приливное искажение формы, прогрев излучением более яркого компаньона и другие эффекты.

Звездные скопления

Звёздное скопление - гравитационно связанная группа звёзд, имеющая общее происхождение и движущаяся в гравитационном поле галактики как единое целое. Некоторые звёздные скопления также содержат, кроме звёзд, облака газа и/или пыли.
По своей морфологии звёздные скопления исторически делятся на два типа - шаровые и рассеянные. В июне 2011 года стало известно об открытии нового класса скоплений, который сочетает в себе признаки и шаровых, и рассеянных скоплений.
Группы гравитационно несвязанных звёзд или слабосвязанных молодых звёзд, объединённых общим происхождением, называют звёздными ассоциациями.

Шаровые

Шаровое звёздное скопление - звёздное скопление, отличающееся от рассеянного скопления бо?льшим количеством звёзд, чётко очерченной симметричной формой, близкой к сферической, и с увеличением концентрации звёзд к центру скопления. Пространственные концентрации звёзд в центральных областях шаровых скоплений составляют?103-104 пк?3 (для сравнения - в окрестностях Солнца пространственная концентрация звёзд составляет?0,13 пк?3, то есть в окрестностях Солнца звёздная плотность в 7-70 тысяч раз меньше), количество звёзд?104-106. Диаметры шаровых скоплений составляют 20-60 пк, массы - 104-106 солнечных.

Рассеянные

Рассеянное звёздное скопление - звёздное скопление, в котором, в отличие от шарового, содержится сравнительно немного звёзд, и часто имеющее неправильную форму. В нашей и подобных ей галактиках, рассеянные скопления являются коллективными членами и входят в плоскую подсистему.
Наиболее крупные скопления (как, например, Плеяды) были известны с древнейших времен. Другие были известны как нечеткие туманные пятна и лишь с изобретением телескопа удалось разделить их на составляющие их звёзды.
У молодых рассеянных скоплений, ассоциирующихся со спиральными рукавами галактики, характерный состав. В них редко встречаются красные и жёлтые гиганты и совершенно нет красных и жёлтых сверхгигантов. В то же время белые и голубые гиганты, сами по себе являющиеся редкими видами звёзд, в рассеянных скоплениях встречаются гораздо чаще. Также, в рассеянных скоплениях чаще, чем в других местах Галактики, можно встретить и ещё более редкие звёзды - белые и голубые сверхгиганты, то есть, звёзды чрезвычайно высокой светимости и температуры, излучающие в сотни тысяч и даже миллионы раз больше, чем наше Солнце.

Галактики

Галактика- гигантская гравитационно-связанная система из звёзд и звёздных скоплений, межзвёздного газа и пыли, и тёмной материи. Все объекты в составе галактик участвуют в движении относительно общего центра масс.
Галактики - чрезвычайно далёкие объекты, расстояние до ближайших из них принято измерять в мегапарсеках, а до далёких - в единицах красного смещения z. Именно из-за удалённости различить на небе невооружённым глазом можно всего лишь три из них: туманность Андромеды (видна в северном полушарии), Большое и Малое Магеллановы Облака (видны в южном). Разрешить изображение галактик до отдельных звёзд не удавалось вплоть до начала XX века. К началу 1990-х годов насчитывалось не более 30 галактик, в которых удалось увидеть отдельные звёзды, и все они входили в Местную группу. После запуска космического телескопа «Хаббл» и ввода в строй 10-метровых наземных телескопов число галактик, в которых удалось различить отдельные звёзды, резко возросло.
Галактики отличаются большим разнообразием: среди них можно выделить сфероподобные эллиптические галактики, дисковые спиральные галактики, галактики с перемычкой (баром), карликовые, неправильные и т. д. Если же говорить о числовых значениях, то, к примеру, их масса варьируется от 107 до 1012 масс Солнца, для сравнения масса нашей галактики Млечный Путь 3?1012 масс Солнца. Диаметр галактик - от 5 до 50 килопарсек (16-160 тысяч световых лет), для сравнения диаметр нашей галактики Млечный Путь около 100 000 световых лет.

Планеты

Планета - это небесное тело, вращающееся по орбите вокруг звезды или её остатков, достаточно массивное, чтобы стать округлым под действием собственной гравитации, но недостаточно массивное для начала термоядерной реакции, и сумевшее очистить окрестности своей орбиты от планетезималей.
Планеты можно поделить на два основных класса: большие, имеющие невысокую плотность планеты-гиганты, и менее крупные землеподобные планеты, имеющие твёрдую поверхность. Согласно определению Международного астрономического союза, в Солнечной системе 8 планет. В порядке удаления от Солнца - четыре землеподобных: Меркурий, Венера, Земля, Марс, затем четыре планеты-гиганта: Юпитер, Сатурн, Уран и Нептун. В Солнечной системе также есть, по крайней мере, 5 карликовых планет: Плутон (до 2006 года считавшийся девятой планетой), Макемаке, Хаумеа, Эрида и Церера. За исключением Меркурия и Венеры, вокруг всех планет обращается хотя бы по одному спутнику.

Состав планетных систем

Экзоплане?та или внесолнечная планета - планета, обращающаяся вокруг звезды за пределами Солнечной системы. Планеты чрезвычайно малы и тусклы по сравнению со звёздами, а сами звёзды находятся далеко от Солнца (ближайшая - на расстоянии 4,22 световых года). Поэтому долгое время задача обнаружения планет возле других звёзд была неразрешимой, первые экзопланеты были обнаружены в конце 1980-х годов. Сейчас такие планеты стали открывать благодаря усовершенствованным научным методам, зачастую на пределе их возможностей.

К концу декабря 2011 года подтверждено существование 716 экзопланет в 584 планетных системах, из которых в 86 более чем одна планета. Следует отметить, что количество надёжных кандидатов в экзопланеты значительно больше. Так по проекту «Кеплер» открыто ещё более 1200 экзопланет с надёжностью около 99 %, однако для получения статуса подтверждённых требуется повторная регистрация таких планет с помощью наземных телескопов.

Объекты планетарной массы

Объект планетарной массы, ОПМ или Планемо - это небесное тело, чья масса позволяет ему попадать в диапазон определения планеты, то есть его масса больше, чем у малых тел, но недостаточна для начала термоядерной реакции по образу и подобию коричневого карлика или звезды. По определению все планеты - объекты планетарной массы, но цель этого термина в том, чтобы описать небесные тела, не соответствующие тому, что типично ожидается от планеты. Например, планеты в «свободном плавании», не обращающиеся вокруг звезд, которые могут быть «планетами-сиротами», покинувшими свою систему, или объекты, появившиеся в ходе коллапса газового облака - вместо типичной для большинства планет аккреции из протопланетного диска (их обычно называют субкоричневыми карликами).

Планета-сирота

Некоторые компьютерные модели формирования звёзд и планетарных систем предполагают, что определённые «объекты планетарной массы» могут покинуть свою систему и уйти в межзвёздное пространство. Некоторые учёные утверждали, что такие объекты уже нашли свободно блуждающими в космосе и их следует классифицировать как планеты, хотя другие предположили, что они могут быть и мало-массивными звёздами.

Планеты-спутники и планеты поясов

Некоторые крупные спутники сходны по размерам с планетой Меркурий или даже превосходят её. Например, Галилеевы спутники и Титан. Алан Стёрн утверждает, что местоположение не должно иметь для планеты значения, и только геофизические признаки должны быть приняты во внимание при присуждении объекту статуса планеты. Он предлагает термин планета-спутник для объекта размером с планету, обращающегося вокруг другой планеты. Аналогично объекты размером с планету в Поясе астероидов или Поясе Койпера также могут считаться планетами согласно Стёрну.

Кометы

Коме?та - небольшое небесное тело, имеющее туманный вид, обращающееся вокруг Солнца обычно по вытянутым орбитам. При приближении к Солнцу комета образует кому и иногда хвост из газа и пыли.

Предположительно, долгопериодические кометы залетают к нам из Облака Оорта, в котором находится огромное количество кометных ядер. Тела, находящиеся на окраинах Солнечной системы, как правило, состоят из летучих веществ (водяных, метановых и других льдов), испаряющихся при подлёте к Солнцу.

На данный момент обнаружено более 400 короткопериодических комет. Из них около 200 наблюдалось в более чем одном прохождении перигелия. Многие из них входят в так называемые семейства. Например, большинство самых короткопериодических комет (их полный оборот вокруг Солнца длится 3-10 лет) образуют семейство Юпитера. Немного малочисленнее семейства Сатурна, Урана и Нептуна (к последнему, в частности, относится знаменитая комета Галлея).

Кометы, прибывающие из глубины космоса, выглядят как туманные объекты, за которыми тянется хвост, иногда достигающий в длину нескольких миллионов километров. Ядро кометы представляет собой тело из твёрдых частиц и льда, окутанное туманной оболочкой, которая называется комой. Ядро диаметром в несколько километров может иметь вокруг себя кому в 80 тыс. км в поперечнике. Потоки солнечных лучей выбивают частицы газа из комы и отбрасывают их назад, вытягивая в длинный дымчатый хвост, который движется за ней в пространстве.

Яркость комет очень сильно зависит от их расстояния до Солнца. Из всех комет только очень малая часть приближается к Солнцу и Земле настолько, чтобы их можно было увидеть невооружённым глазом. Самые заметные из них иногда называют «большими (великими) кометами».

Астероиды

Астероид - относительно небольшое небесное тело Солнечной системы, движущееся по орбите вокруг Солнца. Астероиды значительно уступают по массе и размерам планетам, имеют неправильную форму, и не имеют атмосферы, хотя при этом и у них могут быть спутники.

Классификация астероидов

Общая классификация астероидов основана на характеристиках их орбит и описании видимого спектра солнечного света, отражаемого их поверхностью.

Группы орбит и семейства

Астероиды объединяют в группы и семейства на основе характеристик их орбит. Обычно группа получает название по имени первого астероида, который был обнаружен на данной орбите. Группы - относительно свободные образования, тогда как семейства - более плотные, образованные в прошлом при разрушении крупных астероидов от столкновений с другими объектами.

Спектральные классы

В 1975 Кларк Р. Чапмен (Clark R. Chapman), Дэвид Моррисон (David Morrison) и Бен Целлнер (Ben Zellner) разработали систему классификации астероидов, опирающуюся на показатели цветности, альбедо и характеристики спектра отражённого солнечного света. Изначально эта классификация определяла только три типа астероидов:
Класс С - углеродные, 75 % известных астероидов.
Класс S - силикатные, 17 % известных астероидов.
Класс M - металлические, большинство остальных.

Этот список был позже расширен и число типов продолжает расти по мере того, как детально изучается все больше астероидов:
Класс A- это сравнительно редкий класс астероидов во внутренней части пояса астероидов (с 2005 года астероидов этого типа было обнаружено всего 17).
Класс B- это сравнительно редкий класс астероидов, входящие в группу углеродных астероидов. Среди астероидной популяции объекты класса B преобладают главным образом во внешней части главного пояса астероидов, кроме того преобладают астероиды наклонением орбиты, в частности семейство Паллады, которое включает в себя второй по величине астероид Паллада. В них содержится исходный строительный материал, из которого формировалась наша солнечная система.
и т.д.................