Показательные уравнения. Более сложные случаи. Решение показательных уравнений. Основы

белгородский государственный университет

КАФЕДРА алгебры, теории чисел и геометрии

Тема работы: Показательно-степенные уравнения и неравенства.

Дипломная работа студента физико-математического факультета

Научный руководитель:

______________________________

Рецензент: _______________________________

________________________

Белгород. 2006 г.


Введение 3
Тема I. Анализ литературы по теме исследования.
Тема II. Функции и их свойства, используемые при решении показательно-степенных уравнений и неравенств.
I.1. Степенная функция и ее свойства.
I.2. Показательная функция и ее свойства.
Тема III. Решение показательно-степенных уравнений, алгоритм и примеры.
Тема IV. Решение показательно-степенных неравенств, план решения и примеры.
Тема V. Опыт проведения занятий со школьниками по теме: «Решение показательно-степенных уравнений и неравенств».
V. 1. Обучающий материал.
V. 2. Задачи для самостоятельного решения.
Заключение. Выводы и предложения.
Список используемой литературы.
Приложения

Введение.

«…радость видеть и понимать…»

А.Эйнштейн.

В этой работе я попыталась передать свой опыт работы учителем математики, передать хоть в какой-то степени свое отношение к ее преподаванию - человеческому делу, в котором удивительным образом переплетаются и математическая наука, и педагогика, и дидактика, и психология, и даже философия.

Мне довелось работать с малышами и выпускниками, с детьми, стоящими на полюсах интеллектуального развития: теми, кто со­стоял на учете у психиатра и кто действительно интересовался математикой

Мне довелось решать множество методических задач. Я попы­таюсь рассказать о тех из них, которые мне удалось решить. Но еще больше - не удалось, да и в тех, что вроде бы решены, появ­ляются новые вопросы.

Но еще важнее самого опыта - учительские размышления и сомнения: а почему он именно такой, этот опыт?

И лето нынче на дворе иное, и разворот образования стал поинтереснее. «Под юпи­терами» нынче не поиски мифической оптимальной системы обучения «всех и всему», а сам ребенок. Но тогда - с необходи­мостью - и учитель.

В школьном курсе алгебры и начал анализа, 10 – 11 класс, при сдаче ЕГЭ за курс средней школы и на вступительных экзаменах в ВУЗы встречаются уравнения и неравенства, содержащее неизвестное в основании и показатели степени – это показательно-степенные уравнения и неравенства.

В школе им мало уделяется внимания, в учебниках практически нет заданий на эту тему. Однако, овладение методикой их решения, мне кажется, очень полезным: оно повышает умственные и творческие способности учащихся, перед нами открываются совершенно новые горизонты. При решении задач ученики приобретают первые навыки исследовательской работы, обогащается их математическая культура, развиваются способности к логическому мышлению. У школьников формируются такие качества личности как целеустремленность, целеполагание, самостоятельность, которые будут полезны им в дальнейшей жизни. А также происходит повторение, расширение и глубокое усвоение учебного материала.

Работать над данной темой дипломного исследования я начала еще с написания курсовой. В ходе, которой я глубже изучила и проанализировала математическую литературу по этой теме, выявила наиболее подходящий метод решения показательно-степенных уравнений и неравенств.

Он заключается в том, что помимо общепринятого подхода при решении показательно-степенных уравнений (основание берется больше 0) и при решении тех же неравенств (основание берется больше 1 или больше 0, но меньше 1), рассматриваются еще и случаи, когда основания отрицательны, равны 0 и 1.

Анализ письменных экзаменационных работ учащихся показывает, что неосвещенность вопроса об отрицательном значении аргумента показательно-степенной функции в школьных учебниках, вызывает у них ряд трудностей и ведет к появлению ошибок. А также у них возникают проблемы на этапе систематизации полученных результатов, где могут в силу перехода к уравнению – следствию или неравенству – следствию, появиться посторонние корни. С целью устранения ошибок мы используем проверку по исходному уравнению или неравенству и алгоритм решения показательно-степенных уравнений, либо план решения показательно-степенных неравенств.

Чтобы учащиеся смогли успешно сдать выпускные и вступительные экзамены, я считаю, необходимо уделять больше внимания решению показательно-степенных уравнений и неравенств на учебных занятиях, либо дополнительно на факультативах и кружках.

Таким образом тема , моей дипломной работы определена следующим образом: «Показательно-степенные уравнения и неравенства».

Целями настоящей работы являются:

1. Проанализировать литературу по данной теме.

2. Дать полный анализ решения показательно-степенных уравнений и неравенств.

3. Привести достаточное число примеров по данной теме разнообразных типов.

4. Проверить на урочных, факультативных и кружковых занятиях как будет восприниматься предлагаемые приемы решения показательно-степенных уравнений и неравенств. Дать соответствующие рекомендации к изучению этой темы.

Предметом нашего исследования является разработка методики решения показательно-степенных уравнений и неравенств.

Цель и предмет исследования потребовали решения следующих задач:

1. Изучить литературу по теме: «Показательно-степенные уравнения и неравенства».

2. Овладеть методиками решения показательно-степенных уравнений и неравенств.

3. Подобрать обучающий материал и разработать систему упражнений разных уровней по теме: «Решение показательно-степенных уравнений и неравенств».

В ходе дипломного исследования было проанализировано более 20 работ, посвященных применению различных методов решения показательно-степенных уравнений и неравенств. Отсюда получаем.

План дипломной работы:

Введение.

Глава I. Анализ литературы по теме исследования.

Глава II. Функции и их свойства, используемые при решении показательно-степенных уравнений и неравенств.

II.1. Степенная функция и ее свойства.

II.2. Показательная функция и ее свойства.

Глава III. Решение показательно-степенных уравнений, алгоритм и примеры.

Глава IV. Решение показательно-степенных неравенств, план решения и примеры.

Глава V. Опыт проведения занятий со школьниками по данной теме.

1.Обучающий материал.

2.Задачи для самостоятельного решения.

Заключение. Выводы и предложения.

Список использованной литературы.

В I главе проанализирована литература

Начальный уровень

Показательные уравнения. Исчерпывающее руководство (2019)

Привет! Сегодня мы обсудим с тобой, как решать уравнения, которые могут быть как элементарными (а я надеюсь, что после прочтения этой статьи почти что все они и будут для тебя таковыми), так и такими, которые обычно дают «на засыпку». Видимо, чтобы засыпать окончательно. Но я постараюсь сделать все возможное, чтобы уж теперь ты не попал впросак, столкнувшись с таким типом уравнений. Я не буду больше ходить вокруг да около, а сразу открою маленький секрет: сегодня мы будем заниматься показательными уравнениями.

Прежде чем переходить к разбору способов их решений, я сразу обрисую перед тобой круг вопросов (достаточно небольшой), который тебе стоит повторить, прежде чем бросаться на штурм этой темы. Итак, для получения наилучшего результата, пожалуйста, повтори:

  1. Свойства и
  2. Решение и уравнений

Повторил? Замечательно! Тогда тебе не составит труда заметить, что корнем уравнения является число. Ты точно понял, как я это сделал? Правда? Тогда продолжаем. Теперь ответь мне на вопрос, чему равно в третьей степени? Ты абсолютно прав: . А восьмерка - это какая степень двойки? Правильно - третья! Потому что. Ну вот, теперь давай попробуем решить следующую задачку: Пусть я раз умножаю само на себя число и получаю в результате. Спрашивается, сколько раз я умножил само на себя? Ты, конечно, можешь проверить это непосредственно:

\begin{align} & 2=2 \\ & 2\cdot 2=4 \\ & 2\cdot 2\cdot 2=8 \\ & 2\cdot 2\cdot 2\cdot 2=16 \\ \end{align}

Тогда ты можешь сделать вывод, что само на себя я умножал раза. Как еще это можно проверить? А вот как: непосредственно по определению степени: . Но, согласись, если бы я спрашивал, сколько раз два нужно умножить само на себя, чтобы получить, скажем, ты бы сказал мне: я не буду морочить себе голову и умножать само на себя до посинения. И был бы абсолютно прав. Потому как ты можешь записать все действия кратко (а краткость - сестра таланта)

где - это и есть те самые «разы» , когда ты умножаешь само на себя.

Я думаю, что ты знаешь (а если не знаешь, срочно, очень срочно повторяй степени!), что, тогда моя задачка запишется в виде:

Откуда ты можешь сделать вполне оправданный вывод, что:

Вот так вот незаметно я записал простейшее показательное уравнение:

И даже нашел его корень . Тебе не кажется, что все совсем тривиально? Вот и я думаю именно так же. Вот тебе еще один пример:

Но что же делать? Ведь нельзя записать в виде степени (разумной) числа. Давай не будем отчаиваться и заметим, что оба этих числа прекрасно выражаются через степень одного и того же числа. Какого? Верно: . Тогда исходное уравнение преобразуется к виду:

Откуда, как ты уже понял, . Давай более не будем тянуть и запишем определение :

В нашем с тобой случае: .

Решаются эти уравнения сведением их к виду:

c последующим решением уравнения

Мы, собственно, в предыдущем примере это и делали: у нас получилось, что. И мы решали с тобой простейшее уравнение.

Вроде бы ничего сложного, правда? Давай вначале потренируемся на самых простых примерах:

Мы опять видим, что правую и левую часть уравнения нужно представить в виде степени одного числа. Правда слева это уже сделано, а вот справа стоит число. Но, ничего страшного, ведь, и мое уравнение чудесным образом преобразится вот в такое:

Чем мне пришлось здесь воспользоваться? Каким правилом? Правило «степени в степени» , которое гласит:

А что если:

Прежде чем ответить на этот вопрос, давай мы с тобой заполним вот такую табличку:

Нам не представляет труда заметить, что чем меньше, тем меньше значение, но тем не менее, все эти значения больше нуля. И ТАК БУДЕТ ВСЕГДА!!! Это же свойство справедливо ДЛЯ ЛЮБОГО ОСНОВАНИЯ С ЛЮБЫМ ПОКАЗАТЕЛЕМ!! (для любых и). Тогда какой мы можем сделать вывод об уравнении? А вот какой: оно корней не имеет ! Как не имеет корней и любое уравнение. Теперь давай потренируемся и порешаем простые примерчики:

Давай сверяться:

1. Здесь от тебя ничего не потребуется, кроме знания свойств степеней (которые, кстати, я просил тебя повторить!) Как правило, все приводят к наименьшему основанию: , . Тогда исходное уравнение будет равносильно следующему: Все, что мне нужно - это воспользоваться свойствами степеней: при умножении чисел с одинаковыми основаниями степени складываются, а при делении - вычитаются. Тогда я получу: Ну а теперь со спокойной совестью перейду от показательного уравнения к линейному: \begin{align}
& 2x+1+2(x+2)-3x=5 \\
& 2x+1+2x+4-3x=5 \\
& x=0. \\
\end{align}

2. Во втором примере надо быть внимательнее: беда вся в том, что в левой части у нас ну никак не получится представить и в виде степени одного и того же числа. В таком случае иногда полезно представлять числа в виде произведения степеней с разными основаниями, но одинаковыми показателями:

Левая часть уравнения примет вид: Что же нам это дало? А вот что: Числа с разными основаниями, но одинаковыми показателями можно перемножать. При этом основания перемножаются, а показатель не меняется:

Применительно к моей ситуации это даст:

\begin{align}
& 4\cdot {{64}^{x}}{{25}^{x}}=6400, \\
& 4\cdot {{(64\cdot 25)}^{x}}=6400, \\
& {{1600}^{x}}=\frac{6400}{4}, \\
& {{1600}^{x}}=1600, \\
& x=1. \\
\end{align}

Неплохо, правда?

3. Я не люблю, когда у меня без особой нужды с одной стороны уравнения стоят два слагаемых, а с другой - ни одного (иногда, конечно, это оправданно, но сейчас не такой случай). Перенесу слагаемое с минусом вправо:

Теперь, как и раньше, запишу все через степени тройки:

Сложу степени слева и получу равносильное уравнение

Ты без труда найдешь его корень:

4. Как и в примере три, слагаемому с минусом - место в правой части!

Слева у меня почти что все хорошо, кроме чего? Да, мне мешает «неправильная степень» у двойки. Но я могу без труда это исправить, записав: . Эврика - слева все основания разные, но все степени - одинаковые! Срочно перемножаем!

Тут опять-таки все ясно: (если ты не понял, каким волшебным образом я получил последнее равенство, оторвись на минуту, передохни и прочитай свойства степени еще раз очень внимательно. Кто говорил, что можно пропускать степень с отрицательным показателем? Ну вот и я о том же, что никто). Теперь я получу:

\begin{align}
& {{2}^{4\left({x} -9 \right)}}={{2}^{-1}} \\
& 4({x} -9)=-1 \\
& x=\frac{35}{4}. \\
\end{align}

Вот тебе задачки для тренировки, к которым я лишь приведу ответы (но в «перемешанном» виде). Порешай их, сверься, и мы с тобой продолжим наши изыскания!

Готов? Ответы вот такие:

  1. любое число

Ну ладно, ладно, я пошутил! Вот вам наброски решений (некоторые - весьма краткие!)

Тебе не кажется неслучайным, что одна дробь слева - это «перевернутая» другая? Грех будет этим не воспользоваться:

Это правило очень часто используется при решении показательных уравнений, запомни его хорошенько!

Тогда исходное уравнение станет вот таким:

Решив это квадратное уравнение, ты получишь вот такие корни:

2. Еще один прием решения: деление обеих частей уравнения на выражение, стоящее слева (или справа). Разделю на то, что справа, тогда получу:

Откуда (почему?!)

3. даже не хочу повторятся, настолько все уже «разжевано».

4. равносильно квадратному уравнению, корни

5. Нужно воспользоваться формулой, приведенной в первой задаче, тогда получишь, что:

Уравнение превратилось в тривиальное тождество, которое верно при любом. Тогда ответ - это любое действительное число.

Ну что же, вот ты и потренировался решать простейшие показательные уравнения. Теперь я хочу тебе привести несколько жизненных примеров, которые помогут тебе понять, а для чего они нужны в принципе. Здесь я приведу два примера. Один из них вполне повседневен, ну а другой - скорее имеет научный, нежели практический интерес.

Пример 1 (меркантильный) Пусть у тебя есть рублей, а тебе хочется превратить его в рублей. Банк предлагает тебе взять у тебя эти деньги под годовых с ежемесячной капитализацией процентов (ежемесячным начислением). Спрашивается, на сколько месяцев нужно открыть вклад, чтобы набрать нужную конечную сумму? Вполне приземленная задача, не так ли? Тем не менее ее решение связано с построением соответствующего показательного уравнения: Пусть - начальная сумма, - конечная сумма, - процентная ставка за период, - количество периодов. Тогда:

В нашем случае (если ставка годовых, то за месяц начисляют). А почему делится на? Если не знаешь ответ на этот вопрос, вспоминай тему « »! Тогда мы получим вот такое уравнение:

Данное показательное уравнение уже можно решить только при помощи калькулятора (его внешний вид на это намекает, причем для этого требуется знание логарифмов, с которыми мы познакомимся чуть позже), что я и сделаю: … Таким образом, для получения млн. нам потребуется сделать вклад на месяц (не очень быстро, не правда ли?).

Пример 2 (скорее научный). Несмотря на его, некоторую «оторванность», рекомендую тебе обратить на него внимание: он регулярно «проскальзывает в ЕГЭ!! (задача взята из «реального» варианта) В ходе распада радиоактивного изотопа его масса уменьшается по закону, где (мг) — начальная масса изотопа, (мин.) — время, прошедшее от начального момента, (мин.) — период полураспада. В начальный момент времени масса изотопа мг. Период его полураспада мин. Через сколько минут масса изотопа будет равна мг? Ничего страшного: просто берем и подставляем все данные в предложенную нам формулу:

Разделим обе части на, «в надежде», что слева мы получим что-нибудь удобоваримое:

Ну что же, нам очень повезло! Слева стоит, тогда перейдем к равносильному уравнению:

Откуда мин.

Как видишь, показательные уравнения имеют вполне реальное приложение на практике. Теперь я хочу разобрать с тобой еще один (нехитрый) способ решения показательных уравнений, который основан на вынесении общего множителя за скобки с последующей группировкой слагаемых. Не пугайся моих слов, ты уже сталкивался с этим методом в 7 классе, когда изучал многочлены. Например, если тебе требовалось разложить на множители выражение:

Давай сгруппируем: первое и третье слагаемое, а также второе и четвертое. Ясно, что первое и третье - это разность квадратов:

а второе и четвертое имеют общий множитель тройку:

Тогда исходное выражение равносильно такому:

Откуда вынести общий множитель уже не представляет труда:

Следовательно,

Вот примерно таким образом мы и будем поступать при решении показательных уравнений: искать «общность» среди слагаемых и выносить ее за скобки, ну а потом - будь что будет, я верю, что нам будет везти =)) Например:

Справа стоит далеко не степень семерки (я проверял!) Да и слева - немногим лучше, можно, конечно, «оттяпать» от первого слагаемого множитель а от второго, а затем уже разбираться с полученным, но давай с тобой поступим благоразумнее. Я не хочу иметь дело с дробями, которые неизбежно образуются при «выделении» , так не лучше ли мне вынести? Тогда дробей у меня не будет: как говорится, и волки сыты и овцы целы:

Посчитай выражение в скобках. Волшебным, магическим образом получается, что (удивительно, хотя чего нам еще ждать?).

Тогда сократим обе части уравнения на этот множитель. Получим: , откуда.

Вот пример посложнее (совсем немного, правда):

Вот беда-то! У нас здесь нет одного общего основания! Не совсем ясно, что же теперь делать. А давай сделаем, что сможем: во-первых перенесем «четверки» в одну сторону, а «пятерки» в другую:

Теперь давай вынесем «общее» слева и справа:

Ну и что теперь? В чем выгода от такой бестолковой группировки? На первый взгляд она совсем не видна, однако давай глянем глубже:

Ну а теперь сделаем так, чтобы слева у нас было только выражение с, а справа - все остальное. Как нам это сделать? А вот как: Разделить обе части уравнения сначала на (так мы избавимся от степени справа), а затем разделим обе части на (так мы избавимся от числового множителя слева). Окончательно получим:

Невероятно! Cлева у нас стоит выражение, а справа - просто. Тогда тут же делаем вывод, что

Вот тебе еще один пример на закрепление:

Я приведу его краткое решение (не особо утруждая себя пояснениями), постарайся сам разобраться во всех «тонкостях» решения.

Теперь итоговое закрепление пройденного материала. Постарайся самостоятельно решить следующие задачи. Я лишь приведу краткие рекомендации и советы к их решению:

  1. Вынесем общий множитель за скобки: Откуда
  2. Первое выражение представим в виде: , разделим обе части на и получим, что
  3. , тогда исходное уравнение преобразуется к виду: Ну а теперь подсказка - ищи, где мы с тобой уже решали это уравнение!
  4. Представь как, как, а, ну а затем подели обе части на, так ты получишь простейшее показательное уравнение.
  5. Вынеси за скобки.
  6. Вынеси за скобки.

ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ. СРЕДНИЙ УРОВЕНЬ

Я предполагаю, что после ознакомления с первой статьей, в которой рассказывалось что такое показательные уравнения и как их решать , ты овладел необходимым минимумом знаний, необходимых для решения простейших примеров.

Теперь я разберу еще один метод решения показательных уравнений, это

«метод введения новой переменной» (или замены). Им решается большинство «трудных» задач, на тему показательные уравнения (и не только уравнения). Этот способ - один из наиболее часто употребляемых на практике. Сперва рекомендую ознакомиться с темой .

Как ты уже понял из названия, суть этого метода - ввести такую замену переменной, что твое показательное уравнение чудесным образом преобразится в такое, которое ты уже с легкостью можешь решить. Все что тебе останется после решения этого самого «упрощенного уравнения» - это сделать «обратную замену»: то есть вернуться от замененного к заменяемому. Давай проиллюстрируем только что сказанное на очень простом примере:

Пример 1:

Это уравнение решается при помощи «простой замены», как ее пренебрежительно называют математики. В самом деле, замена здесь - самая очевидная. Стоит лишь увидеть, что

Тогда исходное уравнение превратится вот в такое:

Если же дополнительно представить как, то совершенно ясно, что надо заменять: конечно же, . Во что тогда превратится исходное уравнение? А вот во что:

Ты без проблем самостоятельно отыщешь его корни: . Что нам делать теперь? Пришло время возвращаться к исходной переменной. А что я забыл указать? Именно: при замене некоторой степени на новую переменную (то есть при замене вида), меня будут интересовать только положительные корни! Ты и сам без труда ответишь, почему. Таким образом, нас с тобой не интересует, а вот второй корень нам вполне подходит:

Тогда, откуда.

Ответ:

Как видишь, в предыдущем примере, замена так и просилась к нам в руки. К сожалению, так бывает далеко не всегда. Однако, давай не будем переходить сразу к грустному, а потренируемся еще на одном примере с достаточно простой заменой

Пример 2.

Ясно, что скорее всего заменять придется (это наименьшая из степеней, входящая в наше уравнение), однако прежде чем вводить замену, наше уравнение нужно к ней «подготовить», а именно: , . Тогда можно заменять, в результате я получу следующее выражение:

О ужас: кубическое уравнение с совершенно жуткими формулами его решения (ну если говорить в общем виде). Но давай не будем сразу отчаиваться, а подумаем, что нам делать. Я предложу смошенничать: мы знаем, что для получения «красивого» ответа, нам нужно получить в виде некоторой степени тройки (с чего бы это, а?). А давай попробуем угадать хотя бы один корень нашего уравнения (я начну гадать со степеней тройки).

Первое предположение. Не является корнем. Увы и ах…

.
Левая часть равна.
Правая часть: !
Есть! Угадали первый корень. Теперь дело пойдет легче!

Ты знаешь, про схему деления «уголком»? Конечно знаешь, ты применяешь ее, когда делишь одно число на другое. Но немногие знают, что то же самое можно делать и с многочленами. Есть одна замечательная теорема:

Применимо к моей ситуации это говорит мне о том, что делится без остатка на. Как же осуществляется деление? А вот как:

Я смотрю, на какой одночлен я должен домножить, чтобы получить Ясно, что на, тогда:

Вычитаю полученное выражение из, получу:

Теперь, на что мне нужно домножить, чтобы получить? Ясно, что на, тогда получу:

и опять вычту полученное выражение из оставшегося:

Ну и последний шаг, домножу на, и вычту из оставшегося выражения:

Ура, деление окончено! Что мы накопили в частном? Само собой: .

Тогда получили вот такое разложение исходного многочлена:

Решим второе уравнение:

Оно имеет корни:

Тогда исходное уравнение:

имеет три корня:

Последний корень мы, конечно, отбросим, поскольку он меньше нуля. А первые два после обратной замены дадут нам два корня:

Ответ: ..

Этим примером я отнюдь не хотел напугать тебя, скорее я ставил своей целью показать, что хоть у нас была довольно простая замена, тем не менее она привела к довольно сложному уравнению, решение которого потребовало от нас некоторых особых навыков. Ну что же, от этого никто не застрахован. Зато замена в данном случае была довольно очевидной.

Вот пример с несколько менее очевидной заменой:

Совершенно не ясно, что нам делать: проблема в том, что в нашем уравнении два разных основания и одно основание не получается из другого возведением ни в какую (разумную, естественно) степень. Однако, что мы видим? Оба основания - отличаются только знаком, а их произведение - есть разность квадратов, равная единице:

Определение:

Таким образом, числа, являющиеся основаниями в нашем примере - сопряженные.

В таком случае разумным шагом будет домножить обе части уравнения на сопряженное число.

Например, на, тогда левая часть уравнения станет равна, а правая. Если сделать замену, то наше с тобой исходное уравнение станет вот таким:

его корни, тогда, а помня, что, получим, что.

Ответ: , .

Как правило, метода замены оказывается достаточно, для решения большинства «школьных» показательных уравнений. Следующие задачи взяты из ЕГЭ С1 (повышенный уровень сложности). Ты уже достаточно грамотный для того, чтобы самостоятельно решать данные примеры. Я лишь приведу требуемую замену.

  1. Решите уравнение:
  2. Найдите корни уравнения:
  3. Решите уравнение: . Найдите все корни этого уравнения, принадлежащие отрезку:

А теперь краткие пояснения и ответы:

  1. Здесь нам достаточно заметить, что и. Тогда исходное уравнение будет эквивалентно вот такому: Данное уравнение решается заменой Дальнейшие выкладки проделай самостоятельно. В конце твоя задача сведется к решению простейших тригонометрических (зависящих от синуса или косинуса). Решение подобных примеров мы разберем в других разделах.
  2. Здесь даже можно обойтись без замены: достаточно перенести вычитаемое вправо и представить оба основания через степени двойки: , а затем сразу перейти к квадратному уравнению.
  3. Третье уравнение тоже решается довольно стандартно: представим как. Тогда заменив получим квадратное уравнение: тогда,

    Ты ведь уже знаешь, что такое логарифм? Нет? Тогда срочно читай тему !

    Первый корень, очевидно, не принадлежит отрезку а второй - непонятно! Но мы это очень скоро узнаем! Так как, то (это свойство логарифма!) Сравним:

    Вычтем из обеих частей, тогда получим:

    Левую часть можно представить в виде:

    домножим обе части на:

    можно домножить на, тогда

    Тогда сравним:

    так как, то:

    Тогда второй корень принадлежит искомому промежутку

    Ответ:

Как видишь, отбор корней показательных уравнений требует достаточно глубокого знания свойств логарифмов , так что я советую тебе быть как можно внимательнее, когда решаешь показательные уравнения. Как ты понимаешь, в математике все взаимосвязано! Как говорила моя учительница по математике: «математику, как историю, за ночь не прочитаешь».

Как правило, всю сложность при решении задач С1 составляет именно отбор корней уравнения. Давай потренируемся еще на одном примере:

Ясно, что само уравнение решается довольно просто. Сделав замену мы сведем наше исходное уравнение к следующему:

Вначале давай рассмотрим первый корень. Сравним и: так как, то. (свойство логарифмической функции, при). Тогда ясно, что и первый корень не принадлежит нашему промежутку. Теперь второй корень: . Ясно, что (так как функция при - возрастающая). Осталось сравнить и.

так как, то, в то же время. Таким образом, я могу «вбить колышек» между и. Этим колышком является число. Первое выражение меньше, а второе - больше. Тогда второе выражение больше первого и корень принадлежит промежутку.

Ответ: .

В завершение давай рассмотрим еще один пример уравнения, где замена достаточно нестандартна:

Давай сразу начнем с того, что делать можно, а что - в принципе можно, но лучше не делать. Можно - представить все через степени тройки, двойки и шестерки. К чему это приведет? Да ни к чему и не приведет: мешанина степеней, причем от некоторых будет довольно сложно избавиться. А что же тогда нужно? Давай заметим, что а И что нам это даст? А то, что мы можем свести решение данного примера к решению достаточно простого показательного уравнения! Вначале давай перепишем наше уравнение в виде:

Теперь разделим обе части получившегося уравнения на:

Эврика! Теперь можно заменять, получим:

Ну что, теперь твоя очередь решать задачки на показательные, а я приведу к ним лишь краткие комментарии, чтобы ты не сбился с верного пути! Удачи!

1. Самая трудная! Замену здесь усмотреть ох как негелко! Но тем не менее этот пример вполне решаем при помощи выделения полного квадрата . Для его решения достаточно заметить, что:

Тогда вот тебе и замена:

(Обрати внимание, что здесь при нашей замене мы не можем отбрасывать отрицательный корень!!! А почему, как ты думаешь?)

Теперь для решения примера тебе осталось решить два уравнения:

Оба они решаются «стандартной заменой» (зато второй в одном примере!)

2. Заметь, что и сделай замену.

3. Разложи число на взаимно-простые сомножители и упрости полученное выражение.

4. Подели числитель и знаменатель дроби на (или, если тебе так больше по душе) и сделай замену или.

5. Заметь, что числа и - сопряженные.

ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ. ПРОДВИНУТЫЙ УРОВЕНЬ

В дополнение давай рассмотрим еще один способ - решение показательных уравнений методом логарифмирования . Не могу сказать, что решение показательных уравнений этим методом очень уж популярно, однако в некоторых случаях только он способен привести нас к правильному решению нашего уравнения. Особенно часто он используется для решения так называемых «смешанных уравнений »: то есть таких, где встречаются функции разного вида.

Например, уравнение вида:

в общем случае можно решить только логарифмированием обеих частей (например по основанию), при котором исходное уравнение превратится в следующее:

Давай рассмотрим следующий пример:

Ясно, что по ОДЗ логарифмической функции, нас интересуют только. Однако, это следует не только из ОДЗ логарифма, а еще по одной причине. Я думаю, что тебе не будет трудно угадать, по какой же именно.

Давай прологарифмируем обе части нашего уравнения по основанию:

Как видишь, логарифмирование нашего исходного уравнения достаточно быстро привело нас к правильному (и красивому!) ответу. Давай потренируемся еще на одном примере:

Здесь тоже нет ничего страшного: прологарифмируем обе стороны уравнения по основанию, тогда получим:

Сделаем замену:

Однако, мы кое-что упустили! Ты заметил, где я сделал промах? Ведь тогда:

что не удовлетворяет требованию (подумай откуда оно взялось!)

Ответ:

Попробуй самостоятельно записать решение показательных уравнений приведенных ниже:

А теперь сверь свое решение с этим:

1. Логарифмируем обе части по основанию, учитывая, что:

(второй корень нам не подходит ввиду замены)

2. Логарифмируем по основанию:

Преобразуем полученное выражение к следующему виду:

ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ. КРАТКОЕ ОПИСАНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Показательное уравнение

Уравнение вида:

называется простейшим показательным уравнением.

Свойства степеней

Подходы к решению

  • Приведение к одинаковому основанию
  • Приведение к одинаковому показателю степени
  • Замена переменной
  • Упрощение выражения и применение одного из вышеназванных.

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Степенные или показательные уравнения называют уравнения, в которых переменные находятся в степенях, а основанием является число. Например:

Решение показательного уравнения сводится к 2 довольно простым действиям:

1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания неодинаковые, ищем варианты для решения данного примера.

2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.

Допустим, дано показательное уравнение следующего вида:

Начинать решение данного уравнения стоит с анализа основания. Основаниея разные - 2 и 4, а для решения нам нужно, чтобы были одинаковые, поэтому преобразуем 4 по такой формуле -\[ (a^n)^m = a^{nm}:\]

Прибавляем к исходному уравнению:

Вынесем за скобки \

Выразим \

Поскольку степени одинаковые, отбрасываем их:

Ответ: \

Где можно решить показательное уравнение онлайн решателем?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.

Этот урок предназначен для тех, кто только начинает изучать показательные уравнения. Как всегда, начнём с определения и простейших примеров.

Если вы читаете этот урок, то я подозреваю, что вы уже имеете хотя бы минимальное представление о простейших уравнениях — линейных и квадратных: $56x-11=0$; ${{x}^{2}}+5x+4=0$; ${{x}^{2}}-12x+32=0$ и т.д. Уметь решать такие конструкции совершенно необходимо для того, чтобы не «зависнуть» в той теме, о которой сейчас пойдёт речь.

Итак, показательные уравнения. Сразу приведу парочку примеров:

\[{{2}^{x}}=4;\quad {{5}^{2x-3}}=\frac{1}{25};\quad {{9}^{x}}=-3\]

Какие-то из них могут показаться вам более сложными, какие-то — напротив, слишком простыми. Но всех их объединяет один важный признак: в их записи присутствует показательная функция $f\left(x \right)={{a}^{x}}$. Таким образом, введём определение:

Показательное уравнение — это любое уравнение, содержащее в себе показательную функцию, т.е. выражение вида ${{a}^{x}}$. Помимо указанной функции подобные уравнения могут содержать в себе любые другие алгебраические конструкции — многочлены, корни, тригонометрию, логарифмы и т.д.

Ну хорошо. С определением разобрались. Теперь вопрос: как всю эту хрень решать? Ответ одновременно и прост, и сложен.

Начнём с хорошей новости: по своему опыту занятий с множеством учеников могу сказать, что большинству из них показательные уравнения даются намного легче, чем те же логарифмы и уж тем более тригонометрия.

Но есть и плохая новость: иногда составителей задач для всевозможных учебников и экзаменов посещает «вдохновение», и их воспалённый наркотиками мозг начинает выдавать такие зверские уравнения, что решить их становится проблематично не только ученикам — даже многие учителя на таких задачах залипают.

Впрочем, не будем о грустном. И вернёмся к тем трём уравнениям, которые были приведены в самом начале повествования. Попробуем решить каждое из них.

Первое уравнение: ${{2}^{x}}=4$. Ну и в какую степень надо возвести число 2, чтобы получить число 4? Наверное, во вторую? Ведь ${{2}^{2}}=2\cdot 2=4$ — и мы получили верное числовое равенство, т.е. действительно $x=2$. Что ж, спасибо, кэп, но это уравнение было настолько простым, что его решил бы даже мой кот.:)

Посмотрим на следующее уравнение:

\[{{5}^{2x-3}}=\frac{1}{25}\]

А вот тут уже чуть сложнее. Многие ученики знают, что ${{5}^{2}}=25$ — это таблица умножения. Некоторые также подозревают, что ${{5}^{-1}}=\frac{1}{5}$ — это по сути определение отрицательных степеней (по аналогии с формулой ${{a}^{-n}}=\frac{1}{{{a}^{n}}}$).

Наконец, лишь избранные догадываются, что эти факты можно совмещать и на выходе получить следующий результат:

\[\frac{1}{25}=\frac{1}{{{5}^{2}}}={{5}^{-2}}\]

Таким образом, наше исходное уравнение перепишется следующим образом:

\[{{5}^{2x-3}}=\frac{1}{25}\Rightarrow {{5}^{2x-3}}={{5}^{-2}}\]

А вот это уже вполне решаемо! Слева в уравнении стоит показательная функция, справа в уравнении стоит показательная функция, ничего кроме них нигде больше нет. Следовательно, можно «отбросить» основания и тупо приравнять показатели:

Получили простейшее линейное уравнение, которое любой ученик решит буквально в пару строчек. Ну ладно, в четыре строчки:

\[\begin{align}& 2x-3=-2 \\& 2x=3-2 \\& 2x=1 \\& x=\frac{1}{2} \\\end{align}\]

Если вы не поняли, что сейчас происходило в последних четырёх строчках — обязательно вернитесь в тему «линейные уравнения» и повторите её. Потому что без чёткого усвоения этой темы вам рано браться за показательные уравнения.

\[{{9}^{x}}=-3\]

Ну и как такое решать? Первая мысль: $9=3\cdot 3={{3}^{2}}$, поэтому исходное уравнение можно переписать так:

\[{{\left({{3}^{2}} \right)}^{x}}=-3\]

Затем вспоминаем, что при возведении степени в степень показатели перемножаются:

\[{{\left({{3}^{2}} \right)}^{x}}={{3}^{2x}}\Rightarrow {{3}^{2x}}=-{{3}^{1}}\]

\[\begin{align}& 2x=-1 \\& x=-\frac{1}{2} \\\end{align}\]

И вот за такое решение мы получим честно заслуженную двойку. Ибо мы с невозмутимостью покемона отправили знак «минус», стоящий перед тройкой, в степень этой самой тройки. А так делать нельзя. И вот почему. Взгляните на разные степени тройки:

\[\begin{matrix} {{3}^{1}}=3& {{3}^{-1}}=\frac{1}{3}& {{3}^{\frac{1}{2}}}=\sqrt{3} \\ {{3}^{2}}=9& {{3}^{-2}}=\frac{1}{9}& {{3}^{\frac{1}{3}}}=\sqrt{3} \\ {{3}^{3}}=27& {{3}^{-3}}=\frac{1}{27}& {{3}^{-\frac{1}{2}}}=\frac{1}{\sqrt{3}} \\\end{matrix}\]

Составляя эту табличку, я уж как только не извращался: и положительные степени рассмотрел, и отрицательные, и даже дробные... ну и где здесь хоть одно отрицательное число? Его нет! И не может быть, потому что показательная функция $y={{a}^{x}}$, во-первых, всегда принимает лишь положительные значения (сколько единицу не умножай или не дели на двойку — всё равно будет положительное число), а во-вторых, основание такой функции — число $a$ — по определению является положительным числом!

Ну и как тогда решать уравнение ${{9}^{x}}=-3$? А никак: корней нет. И в этом смысле показательные уравнения очень похожи на квадратные — там тоже может не быть корней. Но если в квадратных уравнениях число корней определяется дискриминантом (дискриминант положительный — 2 корня, отрицательный — нет корней), то в показательных всё зависит от того, что стоит справа от знака равенства.

Таким образом, сформулируем ключевой вывод: простейшее показательное уравнение вида ${{a}^{x}}=b$ имеет корень тогда и только тогда, когда $b>0$. Зная этот простой факт, вы без труда определите: есть у предложенного вам уравнения корни или нет. Т.е. стоит ли вообще его решать или сразу записать, что корней нет.

Это знание ещё неоднократно поможет нам, когда придётся решать более сложные задачи. А пока хватит лирики — пора изучить основной алгоритм решения показательных уравнений.

Как решать показательные уравнения

Итак, сформулируем задачу. Необходимо решить показательное уравнение:

\[{{a}^{x}}=b,\quad a,b>0\]

Согласно «наивному» алгоритму, по которому мы действовали ранее, необходимо представить число $b$ как степень числа $a$:

Кроме того, если вместо переменной $x$ будет стоять какое-либо выражение, мы получим новое уравнение, которое уже вполне можно решить. Например:

\[\begin{align}& {{2}^{x}}=8\Rightarrow {{2}^{x}}={{2}^{3}}\Rightarrow x=3; \\& {{3}^{-x}}=81\Rightarrow {{3}^{-x}}={{3}^{4}}\Rightarrow -x=4\Rightarrow x=-4; \\& {{5}^{2x}}=125\Rightarrow {{5}^{2x}}={{5}^{3}}\Rightarrow 2x=3\Rightarrow x=\frac{3}{2}. \\\end{align}\]

И как ни странно, эта схема работает примерно в 90% случаев. А что тогда с остальными 10%? Остальные 10% — это немного «шизофреничные» показательные уравнения вида:

\[{{2}^{x}}=3;\quad {{5}^{x}}=15;\quad {{4}^{2x}}=11\]

Ну и в какую степень надо возвести 2, чтобы получить 3? В первую? А вот и нет: ${{2}^{1}}=2$ — маловато. Во вторую? Тоже нет: ${{2}^{2}}=4$ — многовато. А в какую тогда?

Знающие ученики уже наверняка догадались: в таких случаях, когда «красиво» решить не получается, к делу подключается «тяжёлая артиллерия» — логарифмы. Напомню, что с помощью логарифмов любое положительное число можно представить как степень любого другого положительного числа (за исключением единицы):

Помните эту формулу? Когда я рассказываю своим ученикам про логарифмы, то всегда предупреждаю: эта формула (она же — основное логарифмическое тождество или, если угодно, определение логарифма) будет преследовать вас её очень долго и «всплывать» в самых неожиданных местах. Ну вот она и всплыла. Давайте посмотрим на наше уравнение и на эту формулу:

\[\begin{align}& {{2}^{x}}=3 \\& a={{b}^{{{\log }_{b}}a}} \\\end{align}\]

Если допустить, что $a=3$ — наше исходное число, стоящее справа, а $b=2$ — то самое основание показательной функции, к которому мы так хотим привести правую часть, то получим следующее:

\[\begin{align}& a={{b}^{{{\log }_{b}}a}}\Rightarrow 3={{2}^{{{\log }_{2}}3}}; \\& {{2}^{x}}=3\Rightarrow {{2}^{x}}={{2}^{{{\log }_{2}}3}}\Rightarrow x={{\log }_{2}}3. \\\end{align}\]

Получили немного странный ответ: $x={{\log }_{2}}3$. В каком-нибудь другом задании многие при таком ответе засомневались бы и начали перепроверять своё решение: вдруг там где-то закралась ошибка? Спешу вас обрадовать: никакой ошибки здесь нет, и логарифмы в корнях показательных уравнений — вполне типичная ситуация. Так что привыкайте.:)

Теперь решим по аналогии оставшиеся два уравнения:

\[\begin{align}& {{5}^{x}}=15\Rightarrow {{5}^{x}}={{5}^{{{\log }_{5}}15}}\Rightarrow x={{\log }_{5}}15; \\& {{4}^{2x}}=11\Rightarrow {{4}^{2x}}={{4}^{{{\log }_{4}}11}}\Rightarrow 2x={{\log }_{4}}11\Rightarrow x=\frac{1}{2}{{\log }_{4}}11. \\\end{align}\]

Вот и всё! Кстати, последний ответ можно записать иначе:

Это мы внесли множитель в аргумент логарифма. Но никто не мешает нам внести этот множитель в основание:

При этом все три варианта являются правильными — это просто разные формы записи одного и того же числа. Какой из них выбрать и записать в настоящем решении — решать только вам.

Таким образом, мы научились решать любые показательные уравнения вида ${{a}^{x}}=b$, где числа $a$ и $b$ строго положительны. Однако суровая реальность нашего мира такова, что подобные простые задачи будут встречаться вам очень и очень редко. Куда чаще вам будет попадаться что-нибудь типа этого:

\[\begin{align}& {{4}^{x}}+{{4}^{x-1}}={{4}^{x+1}}-11; \\& {{7}^{x+6}}\cdot {{3}^{x+6}}={{21}^{3x}}; \\& {{100}^{x-1}}\cdot {{2,7}^{1-x}}=0,09. \\\end{align}\]

Ну и как такое решать? Это вообще можно решить? И если да, то как?

Без паники. Все эти уравнения быстро и просто сводятся к тем простым формулам, которые мы уже рассмотрели. Нужно лишь знать вспомнить парочку приёмов из курса алгебры. Ну и конечно, здесь никуда без правил работы со степенями. Обо всём этом я сейчас расскажу.:)

Преобразование показательных уравнений

Первое, что нужно запомнить: любое показательное уравнение, каким бы сложным оно ни было, так или иначе должно сводиться к простейшим уравнениям — тем самым, которые мы уже рассмотрели и которые знаем как решать. Другими словами, схема решения любого показательного уравнения выглядит следующим образом:

  1. Записать исходное уравнение. Например: ${{4}^{x}}+{{4}^{x-1}}={{4}^{x+1}}-11$;
  2. Сделать какую-то непонятную хрень. Или даже несколько хреней, которые называются «преобразовать уравнение»;
  3. На выходе получить простейшие выражения вида ${{4}^{x}}=4$ или что-нибудь ещё в таком духе. Причём одно исходное уравнение может давать сразу несколько таких выражений.

С первым пунктом всё понятно — записать уравнение на листик сможет даже мой кот. С третьим пунктом тоже, вроде, более-менее ясно — мы такие уравнения уже целую пачку нарешали выше.

Но как быть со вторым пунктом? Что за преобразования? Что во что преобразовывать? И как?

Что ж, давайте разбираться. Прежде всего, отмечу следующее. Все показательные уравнения делятся на два типа:

  1. Уравнение составлено из показательных функций с одним и тем же основанием. Пример: ${{4}^{x}}+{{4}^{x-1}}={{4}^{x+1}}-11$;
  2. В формуле присутствуют показательные функции с разными основаниями. Примеры: ${{7}^{x+6}}\cdot {{3}^{x+6}}={{21}^{3x}}$ и ${{100}^{x-1}}\cdot {{2,7}^{1-x}}=0,09$.

Начнём с уравнений первого типа — они решаются проще всего. И в их решении нам поможет такой приём как выделение устойчивых выражений.

Выделение устойчивого выражения

Давайте ещё раз посмотрим на это уравнение:

\[{{4}^{x}}+{{4}^{x-1}}={{4}^{x+1}}-11\]

Что мы видим? Четвёрка возводится в разные степени. Но все эти степени — простые суммы переменной $x$ с другими числами. Поэтому необходимо вспомнить правила работы со степенями:

\[\begin{align}& {{a}^{x+y}}={{a}^{x}}\cdot {{a}^{y}}; \\& {{a}^{x-y}}={{a}^{x}}:{{a}^{y}}=\frac{{{a}^{x}}}{{{a}^{y}}}. \\\end{align}\]

Проще говоря, сложение показателей можно преобразовать в произведение степеней, а вычитание легко преобразуется в деление. Попробуем применить эти формулы к степеням из нашего уравнения:

\[\begin{align}& {{4}^{x-1}}=\frac{{{4}^{x}}}{{{4}^{1}}}={{4}^{x}}\cdot \frac{1}{4}; \\& {{4}^{x+1}}={{4}^{x}}\cdot {{4}^{1}}={{4}^{x}}\cdot 4. \\\end{align}\]

Перепишем исходное уравнение с учётом этого факта, а затем соберём все слагаемые слева:

\[\begin{align}& {{4}^{x}}+{{4}^{x}}\cdot \frac{1}{4}={{4}^{x}}\cdot 4-11; \\& {{4}^{x}}+{{4}^{x}}\cdot \frac{1}{4}-{{4}^{x}}\cdot 4+11=0. \\\end{align}\]

В первых четырёх слагаемых присутствует элемент ${{4}^{x}}$ — вынесем его за скобку:

\[\begin{align}& {{4}^{x}}\cdot \left(1+\frac{1}{4}-4 \right)+11=0; \\& {{4}^{x}}\cdot \frac{4+1-16}{4}+11=0; \\& {{4}^{x}}\cdot \left(-\frac{11}{4} \right)=-11. \\\end{align}\]

Осталось разделить обе части уравнения на дробь $-\frac{11}{4}$, т.е. по существу умножить на перевёрнутую дробь — $-\frac{4}{11}$. Получим:

\[\begin{align}& {{4}^{x}}\cdot \left(-\frac{11}{4} \right)\cdot \left(-\frac{4}{11} \right)=-11\cdot \left(-\frac{4}{11} \right); \\& {{4}^{x}}=4; \\& {{4}^{x}}={{4}^{1}}; \\& x=1. \\\end{align}\]

Вот и всё! Мы свели исходное уравнение к простейшему и получили окончательный ответ.

При этом в процессе решения мы обнаружили (и даже вынесли за скобку) общий множитель ${{4}^{x}}$ — это и есть устойчивое выражение. Его можно обозначать за новую переменную, а можно просто аккуратно выразить и получить ответ. В любом случае, ключевой принцип решения следующий:

Найти в исходном уравнении устойчивое выражение, содержащее переменную, которое легко выделяется из всех показательных функций.

Хорошая новость состоит в том, что практически каждое показательное уравнение допускает выделение такого устойчивого выражения.

Но есть и плохая новость: подобные выражения могут оказаться весьма хитрыми, и выделить их бывает довольно сложно. Поэтому разберём ещё одну задачу:

\[{{5}^{x+2}}+{{0,2}^{-x-1}}+4\cdot {{5}^{x+1}}=2\]

Возможно, у кого-то сейчас возникнет вопрос: «Паша, ты что, обкурился? Здесь же разные основания — 5 и 0,2». Но давайте попробуем преобразовать степень с основание 0,2. Например, избавимся от десятичной дроби, приведя её к обычной:

\[{{0,2}^{-x-1}}={{0,2}^{-\left(x+1 \right)}}={{\left(\frac{2}{10} \right)}^{-\left(x+1 \right)}}={{\left(\frac{1}{5} \right)}^{-\left(x+1 \right)}}\]

Как видите, число 5 всё-таки появилось, пускай и в знаменателе. Заодно переписали показатель в виде отрицательного. А теперь вспоминаем одно из важнейших правил работы со степенями:

\[{{a}^{-n}}=\frac{1}{{{a}^{n}}}\Rightarrow {{\left(\frac{1}{5} \right)}^{-\left(x+1 \right)}}={{\left(\frac{5}{1} \right)}^{x+1}}={{5}^{x+1}}\]

Тут я, конечно, немного слукавил. Потому что для полного понимания формулу избавления от отрицательных показателей надо было записать так:

\[{{a}^{-n}}=\frac{1}{{{a}^{n}}}={{\left(\frac{1}{a} \right)}^{n}}\Rightarrow {{\left(\frac{1}{5} \right)}^{-\left(x+1 \right)}}={{\left(\frac{5}{1} \right)}^{x+1}}={{5}^{x+1}}\]

С другой стороны, ничто не мешало нам работать с одной лишь дробью:

\[{{\left(\frac{1}{5} \right)}^{-\left(x+1 \right)}}={{\left({{5}^{-1}} \right)}^{-\left(x+1 \right)}}={{5}^{\left(-1 \right)\cdot \left(-\left(x+1 \right) \right)}}={{5}^{x+1}}\]

Но в этом случае нужно уметь возводить степень в другую степень (напомню: при этом показатели складываются). Зато не пришлось «переворачивать» дроби — возможно, для кого-то это будет проще.:)

В любом случае, исходное показательное уравнение будет переписано в виде:

\[\begin{align}& {{5}^{x+2}}+{{5}^{x+1}}+4\cdot {{5}^{x+1}}=2; \\& {{5}^{x+2}}+5\cdot {{5}^{x+1}}=2; \\& {{5}^{x+2}}+{{5}^{1}}\cdot {{5}^{x+1}}=2; \\& {{5}^{x+2}}+{{5}^{x+2}}=2; \\& 2\cdot {{5}^{x+2}}=2; \\& {{5}^{x+2}}=1. \\\end{align}\]

Вот и получается, что исходное уравнение решается даже проще, чем ранее рассмотренное: тут даже не надо выделять устойчивое выражение — всё само сократилось. Осталось лишь вспомнить, что $1={{5}^{0}}$, откуда получим:

\[\begin{align}& {{5}^{x+2}}={{5}^{0}}; \\& x+2=0; \\& x=-2. \\\end{align}\]

Вот и всё решение! Мы получили окончательный ответ: $x=-2$. При этом хотелось бы отметить один приём, который значительно упростил нам все выкладки:

В показательных уравнениях обязательно избавляйтесь от десятичных дробей, переводите их в обычные. Это позволит увидеть одинаковые основания степеней и значительно упростит решение.

Перейдём теперь к более сложным уравнениям, в которых присутствуют разные основания, которые вообще не сводятся друг к другу с помощью степеней.

Использование свойства степеней

Напомню, что у нас есть ещё два особо суровых уравнения:

\[\begin{align}& {{7}^{x+6}}\cdot {{3}^{x+6}}={{21}^{3x}}; \\& {{100}^{x-1}}\cdot {{2,7}^{1-x}}=0,09. \\\end{align}\]

Основная сложность тут — непонятно, что и к какому основанию приводить. Где устойчивые выражения? Где одинаковые основания? Ничего этого нет.

Но попробуем пойти другим путём. Если нет готовых одинаковых оснований, их можно попробовать найти, раскладывая имеющиеся основания на множители.

Начнём с первого уравнения:

\[\begin{align}& {{7}^{x+6}}\cdot {{3}^{x+6}}={{21}^{3x}}; \\& 21=7\cdot 3\Rightarrow {{21}^{3x}}={{\left(7\cdot 3 \right)}^{3x}}={{7}^{3x}}\cdot {{3}^{3x}}. \\\end{align}\]

Но ведь можно поступить наоборот — составить из чисел 7 и 3 число 21. Особенно это просто сделать слева, поскольку показатели и обеих степеней одинаковые:

\[\begin{align}& {{7}^{x+6}}\cdot {{3}^{x+6}}={{\left(7\cdot 3 \right)}^{x+6}}={{21}^{x+6}}; \\& {{21}^{x+6}}={{21}^{3x}}; \\& x+6=3x; \\& 2x=6; \\& x=3. \\\end{align}\]

Вот и всё! Вы вынесли показатель степени за пределы произведения и сразу получили красивое уравнение, которое решается в пару строчек.

Теперь разберёмся со вторым уравнением. Тут всё намного сложнее:

\[{{100}^{x-1}}\cdot {{2,7}^{1-x}}=0,09\]

\[{{100}^{x-1}}\cdot {{\left(\frac{27}{10} \right)}^{1-x}}=\frac{9}{100}\]

В данном случае дроби получились несократимыми, но если бы что-то можно было сократить — обязательно сокращайте. Зачастую при этом появятся интересные основания, с которыми уже можно работать.

У нас же, к сожалению, ничего особо не появилось. Зато мы видим, что показатели степеней, стоящий в произведении слева, противоположны:

Напомню: чтобы избавиться от знака «минус» в показателе, достаточно просто «перевернуть» дробь. Что ж, перепишем исходное уравнение:

\[\begin{align}& {{100}^{x-1}}\cdot {{\left(\frac{10}{27} \right)}^{x-1}}=\frac{9}{100}; \\& {{\left(100\cdot \frac{10}{27} \right)}^{x-1}}=\frac{9}{100}; \\& {{\left(\frac{1000}{27} \right)}^{x-1}}=\frac{9}{100}. \\\end{align}\]

Во второй строчке мы просто вынесли общий показатель из произведения за скобку по правилу ${{a}^{x}}\cdot {{b}^{x}}={{\left(a\cdot b \right)}^{x}}$, а в последней просто умножили число 100 на дробь.

Теперь заметим, что числа, стоящие слева (в основании) и справа, чем-то похожи. Чем? Да очевидно же: они являются степенями одного и того же числа! Имеем:

\[\begin{align}& \frac{1000}{27}=\frac{{{10}^{3}}}{{{3}^{3}}}={{\left(\frac{10}{3} \right)}^{3}}; \\& \frac{9}{100}=\frac{{{3}^{2}}}{{{10}^{3}}}={{\left(\frac{3}{10} \right)}^{2}}. \\\end{align}\]

Таким образом, наше уравнение перепишется следующим образом:

\[{{\left({{\left(\frac{10}{3} \right)}^{3}} \right)}^{x-1}}={{\left(\frac{3}{10} \right)}^{2}}\]

\[{{\left({{\left(\frac{10}{3} \right)}^{3}} \right)}^{x-1}}={{\left(\frac{10}{3} \right)}^{3\left(x-1 \right)}}={{\left(\frac{10}{3} \right)}^{3x-3}}\]

При этом справа тоже можно получить степень с таким же основанием, для чего достаточно просто «перевернуть» дробь:

\[{{\left(\frac{3}{10} \right)}^{2}}={{\left(\frac{10}{3} \right)}^{-2}}\]

Окончательно наше уравнение примет вид:

\[\begin{align}& {{\left(\frac{10}{3} \right)}^{3x-3}}={{\left(\frac{10}{3} \right)}^{-2}}; \\& 3x-3=-2; \\& 3x=1; \\& x=\frac{1}{3}. \\\end{align}\]

Вот и всё решение. Основная его идея сводится к тому, что даже при разных основаниях мы пытаемся любыми правдами и неправдами свести эти основания к одному и тому же. В этом нам помогают элементарные преобразования уравнений и правила работы со степенями.

Но какие правила и когда использовать? Как понять, что в одном уравнении нужно делить обе стороны на что-то, а в другом — раскладывать основание показательной функции на множители?

Ответ на этот вопрос придёт с опытом. Попробуйте свои силы сначала на простых уравнениях, а затем постепенно усложняйте задачи — и очень скоро ваших навыков будет достаточно, чтобы решить любое показательное уравнение из того же ЕГЭ или любой самостоятельной/контрольной работы.

А чтобы помочь вам в этом нелёгком деле, предлагаю скачать на моём сайте комплект уравнений для самостоятельного решения. Ко всем уравнениям есть ответы, поэтому вы всегда сможете себя проверить.

На данном уроке мы рассмотрим решение более сложных показательных уравнений, вспомним основные теоретические положения касательно показательной функции.

1. Определение и свойства показательной функции, методика решения простейших показательных уравнений

Напомним определение и основные свойства показательной функции. Именно на свойствах базируется решение всех показательных уравнений и неравенств.

Показательная функция - это функция вида , где основание степени и Здесь х - независимая переменная, аргумент; у - зависимая переменная, функция.

Рис. 1. График показательной функции

На графике показаны возрастающая и убывающая экспоненты, иллюстрирующие показательную функцию при основании большем единицы и меньшем единицы, но большим нуля соответственно.

Обе кривые проходят через точку (0;1)

Свойства показательной функции :

Область определения: ;

Область значений: ;

Функция монотонна, при возрастает, при убывает.

Монотонная функция принимает каждое свое значение при единственном значении аргумента.

При когда аргумент возрастает от минус до плюс бесконечности, функция возрастает от нуля не включительно до плюс бесконечности. При наоборот, когда аргумент возрастает от минус до плюс бесконечности, функция убывает от бесконечности до нуля не включительно.

2. Решение типовых показательных уравнений

Напомним, как решать простейшие показательные уравнения. Их решение основано на монотонности показательной функции. К таким уравнениям сводятся практически все сложные показательные уравнения.

Равенство показателей степени при равных основаниях обусловлено свойством показательной функции, а именно ее монотонностью.

Методика решения:

Уравнять основания степеней;

Приравнять показатели степеней.

Перейдем к рассмотрению более сложных показательных уравнений, наша цель - свести каждое из них к простейшему.

Освободимся от корня в левой части и приведем степени к одинаковому основанию:

Для того чтобы свести сложное показательное уравнение к простейшим, часто используется замена переменных.

Воспользуемся свойством степени:

Вводим замену. Пусть , тогда . При такой замене очевидно, что у принимает строго положительные значения. Получаем:

Умножим полученное уравнение на два и перенесем все слагаемые в левую часть:

Первый корень не удовлетворяет промежутку значений у, отбрасываем его. Получаем:

Приведем степени к одинаковому показателю:

Вводим замену:

Пусть , тогда . При такой замене очевидно, что у принимает строго положительные значения. Получаем:

Решать подобные квадратные уравнения мы умеем, выпишем ответ:

Чтобы удостовериться в правильности нахождения корней, можно выполнить проверку по теореме Виета, т. е. найти сумму корней и их произведение и сверить с соответствующими коэффициентами уравнения.

Получаем:

3. Методика решения однородных показательных уравнений второй степени

Изучим следующий важный тип показательных уравнений:

Уравнения такого типа называют однородными второй степени относительно функций f и g. В левой его части стоит квадратный трехчлен относительно f с параметром g или квадратный трехчлен относительно g с параметром f.

Методика решения:

Данное уравнение можно решать как квадратное, но легче поступить по-другому. Следует рассмотреть два случая:

В первом случае получаем

Во втором случае имеем право разделить на старшую степень и получаем:

Следует ввести замену переменных , получим квадратное уравнение относительно у:

Обратим внимание, что функции f и g могут быть любыми, но нас интересует тот случай, когда это показательные функции.

4. Примеры решения однородных уравнений

Перенесем все слагаемые в левую часть уравнения:

Поскольку показательные функции приобретают строго положительные значения, имеем право сразу делить уравнение на , не рассматривая случай, когда :

Получаем:

Вводим замену: (согласно свойствам показательной функции)

Получили квадратное уравнение:

Определяем корни по теореме Виета:

Первый корень не удовлетворяет промежутку значений у, отбрасываем его, получаем:

Воспользуемся свойствами степени и приведем все степени к простым основаниям:

Несложно заметить функции f и g:

Поскольку показательные функции приобретают строго положительные значения, имеем право сразу делить уравнение на , не рассматривая случай, когда .