Методы решения судоку понятно. Способы решения классического судоку

Первое, с чем следовало бы определиться в методологии решения проблем, это вопрос собственно понимания того, чего мы достигаем и можем достигнуть в вопросах решения проблем. Понимание обычно мыслится как нечто само собой разумеющееся, и мы упускаем из виду тот момент, что понимание имеет определенную начальную точку отсчета понимания, лишь относительно которой мы можем говорить о том, что понимание действительно имеет место с определенного нами конкретного момента. Судоку здесь, в нашем рассмотрении, удобна тем, что позволяет на ее примере в некоторой мере смоделировать вопросы понимания и решения проблем. Однако начнем мы с несколько иных и не менее важных, чем судоку, примеров.

Физик, изучающий специальную теорию относительности, может говорить о "кристально ясных" положениях Эйнштейна. Такое словосочетание мне встретилось на одном из сайтов в интернете. Но с чего начинается это понимание "кристальной ясности". Оно начинается с усвоение математической записи постулатов, из которых могут строиться по известным и понятным правилам все многоэтажные математические конструкции СТО. Но чего не понимает физик, как и я, это почему работают постулаты СТО именно так, а не иначе.

Прежде всего, подавляющее большинство обсуждающих это учение не понимают, что именно заключается в постулате постоянства скорости света в переложении из математического его применения на реальность. А этот постулат подразумевает постоянство скорости света во всех мыслимых и не мыслимых смыслах. Скорость света постоянна относительно любых покоящихся и движущих объектов разом. Скорость луча света, согласно постулату, постоянна даже относительно встречного, поперечного и удаляющегося луча света. А, при этом, реально мы имеем лишь замеры, косвенно связанные со скоростью света, интерпретируемые как ее постоянство.

Законы Ньютона для физика и даже для просто изучающих физику столь привычны, что представляются настолько понятными, как нечто само собой разумеющееся и иного быть не может. Но, скажем, применение закона всемирного тяготения начинается с его математической записи, по которой можно рассчитать даже траектории космических объектов и характеристики орбит. Но почему эти законы работают именно так, а не иначе – такого понимания у нас нет.

Аналогично и судоку. В интернете можно найти многократно повторяющиеся описания "базовых" способов решения задач судоку. Если запомнить эти правила, то можно понимать как решается та или иная задача судоку посредством применения "базовых" правил. Но у меня вопрос: а понимаем ли мы, почему эти "базовые" способы срабатывают именно так, а не иначе.

Итак, мы переходим к следующему ключевому положению в методологии решения проблем. Понимание возможно только на основе какой-то модели, предоставляющей базу для этого понимания и возможность произвести некоторый натурный или мысленный эксперимент. Без этого мы можем иметь лишь правила применения заученных исходных положений: постулатов СТО, законов Ньютона или "базовых" способов в судоку.

У нас нет и в принципе не может быть моделей, удовлетворяющих постулату ничем не ограничиваемого постоянства скорости света. У нас нет, но могут быть придуманы недоказуемые модели, согласующиеся с законами Ньютона. И такие "ньютоновские" модели есть, но они как-то не впечатляют продуктивными возможностями для проведения натурного или мысленного эксперимента. Зато судоку предоставляет нам такие возможности, которые мы можем использовать и для понимания собственно задач судоку, и для иллюстрации моделирования, как общего подхода в решении проблем.

Одна из возможных моделей задач судоку – это рабочая таблица. Создается она простым заполнением всех пустых клеток (ячеек) заданной в задаче таблицы числами 123456789. Далее задача сводится к последовательному удалению всех лишних цифр из ячеек до тех пор, пока все клетки таблицы будут заполнены единичными (эксклюзивными) цифрами, удовлетворяющими условию задачи.

Я создаю такую рабочую таблицу в Excel. Сначала выделяю все пустые ячейки (клетки) таблицы. Нажимаю F5-"Выделить"-"Пустые ячейки"-"OK". Более общий способ выделения нужных ячеек: удерживаю Ctrl и кликом мышки выделяю эти ячейки. Затем для выделенных ячеек устанавливаю синий цвет, размер 10 (исходный – 12) и шрифт Arial Narrow. Это все для того, чтобы хорошо просматривались последующие изменения в таблице. Далее я ввожу в пустые клетки числа 123456789. Делаю это следующим образом: записываю и сохраняю это число в отдельной ячейке. Затем нажимаю на F2, выделяю и копирую это число операцией Ctrl+C. Далее перехожу к ячейкам таблицы и, последовательно обходя все пустые ячейки, ввожу в них число 123456789 операцией Ctrl+V, и рабочая таблица готова.

Лишние цифры, о которых будет речь далее, я удаляю следующим образом. Операцией Ctrl+клик мышкой - выделяю ячейки с лишней цифрой. Затем нажимаю Ctrl+H и в верхнее поле открывшегося окошка ввожу удаляемую цифру, а нижнее поле должно быть совершенно пустым. Далее остается щелкнуть по опции "Заменить все" и лишняя цифра удалена.

Судя по тому, что мне обычно удается сделать более продвинутую обработку таблиц обычными "базовыми" способами, чем в примерах, приводимых в интернете, рабочая таблица является наиболее простым инструментом в решении задач судоку. Более того, многие ситуации, касающиеся применения наиболее сложных из так называемых "базовых" правил, у меня в рабочей таблице попросту не возникали.

В то же время, рабочая таблица – это и модель, на которой можно провести эксперименты с последующим выявлением всех "базовых" правил и разных нюансов их применения, вытекающего из экспериментов.

Итак, перед вами фрагмент рабочей таблицы с девятью блоками, нумеруемыми слева-направо и сверху-вниз. В данном случае у нас заполнен цифрами 123456789 четвертый блок. Это и есть наша модель. Вне блока красным цветом мы выделили "активированные" (окончательно определенные) цифры, в данном случае четверки, которые намерены подставить в оформляемую таблицу. Голубые пятерки – это пока не определенные относительно их дальнейшей роли цифры, о которых после поговорим. Назначенные нами активированные цифры как бы вычеркивают, выталкивают, удаляют – в общем, вытесняют одноименные цифры в блоке, поэтому там они представлены бледным цветом, символизирующим тот факт, что эти бледные цифры удалены. Хотел было сделать этот цвет еще бледнее, но тогда они могли бы стать вообще не заметными при просмотре в интернете.

В итоге в четвертом блоке в ячейке E5 оказалась одна, тоже активированная, но скрытая четверка. "Активированная" потому, что она, в свою очередь тоже может удалять лишние цифры, если таковые окажутся на ее пути, а "скрытая" потому, что она находится среди других цифр. Если ячейку E5 атаковать остальными, кроме 4, активированными цифрами 12356789, то в E5 возникнет "голая" одиночка – 4.

Теперь уберем одну активированную четверку, например из F7. Тогда четверка в заполненном блоке может оказаться уже и только в ячейке E5 или F5, оставаясь при этом активированной в строке 5. Если к этой ситуации привлечь активированные пятерки, без F7=4 и F8=5, то в ячейках E5 и F5 возникнет голая или скрытая активированная пара 45.

После того как вы в достаточной мере отработаете и осмыслите разные варианты с голыми и скрытыми одиночками, двойками, тройками и т.д. не только в блоках, но и в строках и столбцах, мы можем перейти к еще одному эксперименту. Создадим голую пару 45, как было сделано раньше, а потом подключим активированные F7=4 и F8=5. В результате возникнет ситуация E5=45. Подобные ситуация очень часто возникает в процессе обработки рабочей таблицы. Такая ситуация означает, что одна из этих цифр, в данном случае 4 или 5, обязательно должна находиться в блоке, строке и столбце, включающих в себя ячейку E5, потому что во всех этих случаях должны присутствовать две цифры, а не одна из них.

А главное, мы теперь уже знаем, каким образом возникают часто встречающиеся ситуации, подобные E5=45. Подобным же образом определимся с ситуациями, когда в одной ячейке возникает тройка цифр и т.п. И когда мы доведем степень осмысления и восприятия этих ситуаций до состояния самоочевидности и простоты, тогда следующий шаг – это уже, так сказать, научное осмысление ситуаций: мы тогда сможем делать статистический анализ таблиц судоку, выявлять закономерности и использовать наработанный материал для решения самых сложнейших задач.

Таким образом, экспериментируя на модели, мы получаем наглядное и даже "научное" представление относительно скрытых или открытых одиночек, пар, троек и т.д. Если вы ограничитесь только операциями с описанной простой моделью, то некоторые ваши представления окажутся неточными или даже ошибочными. Однако как только вы перейдете к решению конкретных задач, то неточности первоначальных представлений быстро выявятся, ну а модели, на которых проводились эксперименты, придется переосмыслить и уточнить. Таков неизбежный путь гипотез и уточнений в решении любых проблем.

Надо сказать, что скрытые и открытые одиночки, а также открытые пары, тройки и даже четверки, – это обычные ситуации, возникающие при решении задач судоку с рабочей таблицей. Скрытые пары случались редко. А вот скрытые тройки, четверки и т.д. мне при обработке рабочих таблиц как-то не попадались, так же, как и многократно описанные в интернете методы обхода контуров "x-wing" и "рыба-меч", при которых возникают "кандидаты" на удаление при любом из двух альтернативных способов обхода контуров. Смысл этих способов: если уничтожаем "кандидата" х1, то остается эксклюзивный кандидат х2 и при этом удаляется кандидат х3, а если уничтожаем х2, то остается эксклюзивный х1, но и в этом случае удаляется кандидат х3, так что в любом случае следует удалить х3, не затрагивая пока кандидатов х1 и х2. В более общем плане, это частный случай ситуации: если два альтернативных способа приводят к одному и тому же результату, то этот результат может использоваться для решения задачи судоку. В таком, более общем, плане ситуации мне встречались, но не в варианте "x-wing" и "рыба-меч" и не при решении задач судоку, для которых достаточно знания лишь "базовых" подходов.

Особенности применения рабочей таблицы можно показать на следующем нетривиальном примере. На одном из форумов решателей судоку http://zforum.net/index.php?topic=3955.25;wap2 мне встретилась задача, представленная как одна из сложнейших задач судоку, не решаемая обычными способами, без применения перебора с допущениями относительно подставляемых в ячейки цифр. Покажем, что с рабочей таблицей можно решить эту задачу без подобного перебора:

Справа исходная задача, слева рабочая таблица после "вычеркивания", т.е. рутинной операции удаления лишних цифр.

Сначала договоримся об обозначениях. ABC4=689 означает, что в ячейках A4, B4 и C4 находятся цифры 6, 8 и 9 – по одной или по несколько цифр на ячейку. Со строками аналогично. Так, B56=24 означает, что в ячейках В5 и В6 находятся цифры 2 и 4. Знак ">" – это знак обусловленного действия. Так, D4=5>I4-37 означает, что вследствие сообщения D4=5 следует поместить число 37 в ячейку I4. Сообщение может быть явным – "голым" – и скрытым, которое следует выявить. Воздействие сообщения может быть последовательным (передаваться опосредованно) по цепочке и параллельным (воздействовать непосредственно на другие ячейки). Например:

D3=2; D8=1>A9-1>A2-2>A3-4,G9-3; (D8=1)+(G9=3)>G8-7>G7-1>G5-5

Эта запись означает, что D3=2, но этот факт нужно выявить. D8=1 передает A3 свое воздействие по цепочке и в A3 следует записать 4; одновременно D3=2 воздействует непосредственно на G9, что приводит к результату G9-3. (D8=1)+(G9=3)>G8-7 – совместное воздействие факторов (D8=1) и (G9=3) приводит к результату G8-7. И т.п.

В записях может также встретиться сочетание типа H56/68. Оно означает, что в ячейках H5 и H6 запрещены цифры 6 и 8, т.е. их следует из этих ячеек удалить.

Итак, начинаем работу с таблицей и для начала применяем хорошо проявленное, заметное условие ABC4=689. Это означает, что во всех остальных (кроме A4, B4 и C4) ячейках блока 4 (средний, левый) и 4-й строки должны быть удалены цифры 6, 8 и 9:

Аналогичным образом применяем B56=24. В совокупности имеем D4=5 и (после D4=5>I4-37) HI4=37, а также (после B56=24>C6-1) C6=1. Применим это к рабочей таблице:

В I89=68скрытая>I56/68>H56-68: т.е. в ячейках I8 и I9 находится скрытая пара цифр 5 и 6, которая запрещает нахождение этих цифр в I56, что приводит к результату H56-68. Этот фрагмент мы можем рассмотреть по другому, подобно тому, как это делали в экспериментах на модели рабочей таблицы: (G23=68)+(AD7=68)>I89-68; (I89=68)+(ABC4=689)>H56-68. То есть, двусторонняя "атака" (G23=68) и (AD7=68) приводит к тому, что в I8 и I9 могут находиться только цифры 6 и 8. Далее (I89=68) подключается к "атаке" на H56 совместно с предыдущими условиями, что и приводит к H56-68. Дополнительно к этой "атаке" подключается (ABC4=689), что в данном примере выглядит излишним, однако если бы мы работали без рабочей таблицы, то фактор воздействия (ABC4=689) оказался бы скрытым, и вполне уместным было бы обратить на него внимание специально.

Следующее действие: I5=2>G1-2,G6-9,B6-4,B5-2.

Надеюсь, оно уже понятно без комментариев: подставляйте цифры, которые стоят после тире, не ошибетесь:

H7=9>I7-4; D6=8>D1-4,H6-6>H5-8:

Следующая серия действий:

D3=2; D8=1>A9-1>A2-2>A3-4,G9-3;

(D8=1)+(G9=3)>G8-7>G7-1>G5-5;

D5=9>E5-6>F5-4:

I=4>C9-4>C7-2>E9-2>EF7-35>B7-7,F89-89,

то есть, в результате "вычеркивания" – удаления лишних цифр – в ячейках F8 и F9 возникает открытая, "голая" пара 89, которую, вместе с другими результатами, указанными в записи, применяем к таблице:

H2=4>H3-1>F2-1>F1-6>A1-3>B8-3,C8-5,H1-7>I2-5>I3-3>I4-7>H4-3

Их результат:

Затем следуют довольно рутинные, очевидные действия:

H1=7>C1-8>E1-5>F3-7>E2-9>E3-8,C3-9>B3-5>B2-6>C2-7>C4-6>A4-9>B4-8;

B2=6>B9-9>A8-6>I8-8>F8-9>F9-8>I9-6;

E7=3>F7-5,E6-7>F6-3

Их результат: окончательное решение задачи:

Так или иначе, будем считать, что с "базовыми" способами в судоку или в иных областях интеллектуального приложения мы разобрались на основе подходящей для этого модели и даже научились их применять. Но это лишь часть нашего продвижения в методологии решения проблем. Далее, повторюсь, следует не всегда учитываемый, но непременный этап доведения предварительно усвоенных способов до состояния простоты их применения. Решение примеров, осмысливание результатов и способов этого решения, переосмысливание этого материала на основе принятой модели, снова продумывание всех вариантов с доведением степени их понимания до автоматизма, когда решение с применением "базовых" положений становится рутинных и исчезает как проблема. Что это дает: это каждый должен прочувствовать на своем опыте. А суть в том, что когда проблемная ситуация становится рутинной, то поисковый механизм интеллекта направляется к освоению все более сложных положений в области решаемых проблем.

А что такое "более сложные положения"? Это всего лишь новые "базовые" положения в решении проблемы, понимание которых, в свою очередь, тоже можно довести до состояния простоты, если найти для этой цели подходящую модель.

В статье Василенко С.Л. "Числовая гармония Судоку" я нахожу пример задачи с 18 симметричными ключами:

Относительно этой задачи утверждается, что она может быть решена с применением "базовых" приемов только до некоторого состояния, после достижения которого остается лишь применить простой перебор с пробной подстановкой в ячейки некоторых предполагаемых эксклюзивных (единичных, одиночных) цифр. Это состояние (продвинутое чуть далее, чем в примере Василенко) имеет вид:

Такая модель есть. Это своеобразный механизм вращения выявленных и не выявленных эксклюзивных (единичных) цифр. В простейшем случае, некоторая тройка эксклюзивных цифр вращается в правом или левом направлении, переходя этой группой от строки к строке или от столбца к столбцу. В целом же, при этом вращаются в каком-то одном направлении три группы троек цифр. В более сложных случаях, три пары эксклюзивных цифр вращается в одном направлении, а тройка одиночек вращается в противоположном направлении. Так, например, происходит вращение эксклюзивных цифр в первых трех строках рассматриваемой задачи. И, что самое здесь важное, это своеобразное вращение можно заметить, рассматривая расположение цифр в обработанной рабочей таблице. Этих сведений пока достаточно, а другие нюансы модели вращения мы поймем в процессе решения задачи.

Итак, в первых (верхних) трех строках (1, 2 и3) мы можем заметить вращение пар (3+8) и (7+9), а также (2+х1) с неизвестным х1 и тройка одиночек (х2+4+1) с неизвестным х2. При этом, мы можем обнаружить, что каждое из х1 и х2 могут быть либо 5, либо 6.

В строках 4, 5 и 6 просматриваются пары (2+4) и (1+3). Должна быть также 3-я неизвестная пара и тройка одиночек из которых известна лишь одна цифра 5.

Аналогичным образом просматриваем строки 789, затем тройки столбцов ABC, DEF и GHI. Собранную информацию мы запишем в символическом и, надеюсь, достаточно понятном виде:

Пока нам эта информация нужна только для понимания общей ситуации. Тщательно продумайте ее и тогда мы сможем далее продвинуться вперед к следующей специально подготовленной для этого таблице:

Цветами я выделил альтернативные варианты. Голубой цвет означает "разрешено", а желтый – "запрещено". Если, скажем, разрешено в A2=79 разрешено A2=7, то C2=7 – запрещено. Или наоборот – разрешено A2=9, запрещено C2=9. А далее разрешения и запрещения передаются по логической цепочке. Такая расцветка сделана для того, чтобы было проще просматривать разные альтернативные варианты. В общем, это некоторая аналогия упомянутым ранее способов "x-wing" и "рыба-меч" при обработке таблиц.

Просматривая вариант B6=7 и, соответственно, B7=9, мы можем обнаружить сразу два момента, несовместимых с этим вариантом. Если B7=9, то в строках 789 возникает синхронно вращающаяся тройка, что недопустимо, так как синхронно (в одном направлении) могут вращаться либо только три пары (и три одиночки асинхронно им), либо три тройки (без одиночек). Кроме этого, если B7=9, то через несколько шагов обработки рабочей таблицы в 7-й строке обнаружим несовместимость: B7=D7=9. Так что подставляем единственно приемлемый из двух альтернативных вариант B6=9, и далее задача решается простыми средствами обычной обработки без всякого слепого перебора:

Далее, у меня есть готовый пример с применением модели вращения для решения задачи из чемпионата мира по судоку, но этот пример я опускаю, чтобы слишком уж не растягивать данную статью. К тому же, как оказалось, эта задача имеет три варианта решения, что плохо подходит для первоначального освоения модели вращения цифр. Еще я изрядно "попыхтел" над вытащенной из интернета задачей Гэри МакГайра с 17 ключами для решения его головоломки, пока с еще более изрядным раздражением не выяснил, что эта "головоломка" имеет более 9 тысяч вариантов решения.

Итак, волей-неволей, приходится переходить к разработанной Арто Инкала "самой сложной в мире" задаче судоку, имеющей, как известно, единственное решение.

После внесения двух вполне очевидных эксклюзивных цифр и обработки рабочей таблицы, задача имеет следующий вид:

Черным и более крупным шрифтом выделены ключи, заданные исходной задаче. Чтобы продвинуться в решении этой задачи, мы снова должны опереться на адекватную, подходящую для этой цели модель. Модель эта – своеобразный механизм вращения цифр. Она уже не однажды обсуждалась в этой и предыдущих статьях, но чтобы понять дальнейший материал статьи, этот механизм следует продумать и проработать в деталях. Примерно так, как если бы вы поработали с таким механизмом эдак с десяток лет. Но вы все равно сможете понять этот материал если не с первого чтения, то со второго или третьего и т.д. Более того, если проявите настойчивость, то и этот "сложный для понимания" материал вы доведете до состояния его рутинности и простоты. Нового в этом плане здесь ничего нет: то, что сначала очень сложно, постепенно становится не так уж сложным, а при дальнейшей непрекращающейся проработке все самым очевидным и не требующих умственных усилий становится на свои подобающие места, после чего вы можете освободить свой умственный потенциал для дальнейшего продвижения вперед по данной решаемой проблеме или относительно других проблем.

При внимательном анализе структуры задачи Арто Инкала можно заметить, что вся она построена по принципу трех синхронно вращающихся пар и тройки вращающихся асинхронно парам одиночек: (х1+х2)+(х3+х4)+(х5+х6)+(х7+х8+х9). Порядок вращения может быть, например, такой: в первых трех строках 123 первая пара (х1+х2) переходит из первой строки первого блока во вторую строку второго блока, затем в третью строку третьего блока. Вторая пара переходит из второй строки первого блока в третью строку второго блока, затем, в этом вращении, перепрыгивает в первую строку третьего блока. Третья пара из третьей строки первого блока перепрыгивает в первую строку второго блока и далее в этом же направлении вращения переходит во вторую строку третьего блока. Тройка одиночек движется в подобном режиме вращения, но в противоположном вращению пар. Ситуация со столбцами выглядит аналогично: если таблицу мысленно (или реально) повернуть на 90 градусов, то строки станут столбцами, с тем же, как ранее для строк, характером движения одиночек и пар.

Проворачивая в уме эти вращения применительно к задаче Арто Инкала, мы постепенно доходим до понимания очевидных ограничений на выбор вариантов этого вращения для выбранной тройки строк или столбцов:

Не должно быть синхронно (в одном направлении) вращающихся троек и пар – такие тройки, в отличие от тройки одиночек, будем в дальнейшем называть триплетами;

Не должно быть асинхронных между собой пар или асинхронных между собой одиночек;

Не должно быть вращающихся в одном (например, в правом) направлении и пар и одиночек – это повторение предыдущих ограничений, но может быть оно покажется более понятным.

Кроме этого есть и другие ограничения:

Не должно быть ни одной пары в 9-ти строках, совпадающей с парой в каком-либо из столбцов и то же самое относительно столбцов и строк. Это должно быть очевидным: потому что сам факт расположения двух цифр в одной строке свидетельствует о том, что они находятся в разных столбцах.

Еще можно сказать, что очень редко бывают совпадения пар в разных тройках строк или подобное совпадение в тройках столбцов, а также редко бывают совпадения троек одиночек в строках и/или столбцах, но это уже, так сказать, вероятностные закономерности.

Исследование блоков 4,5,6.

В блоках 4-6 возможны пары (3+7) и (3+9). Если принять (3+9), то получится недопустимое синхронное вращение триплета (3+7+9), так что имеем пару (7+3). После подстановки этой пары и последующей обработки таблицы обычными средствами получим:

При этом мы можем сказать, что 5 в B6=5 может быть лишь одиночкой, асинхронной (7+3), а 6 в I5=6 является параобразующей, так как она находится в одной строке H5=5 в шестом блоке и, следовательно, она не может быть одиночкой и может двигаться лишь синхронно с (7+3.

и расположил кандидатов на одиночки по количеству появления их в этой роли в данной таблице:

Если принять, что наиболее частотные 2, 4 и 5 и есть одиночки, то по правилам вращения с ними могут сочетаться только пары: (7+3), (9+6) и (1+8) - пара (1+9) отброшена, так как она отрицает пару (9+6). Далее после подстановки этих пар и одиночек и дальнейшей обработки таблицы обычными методами получим:

Вот такая непокорная таблица оказалась – не желает обрабатываться до конца.

Придется поднапрячься и заметить, что в столбцах ABC есть пара (7+4) и что 6 перемещается синхронно 7 в этих столбцах, поэтому 6 – параобразующая, так что в столбце "C" 4-го блока возможно лишь сочетания (6+3)+8 либо (6+8)+3. Первое из этих сочетаний не проходит, так как тогда в 7-м блоке в столбце "B" возникнет недопустимая синхронная тройка – триплет (6+3+8). Ну а далее, после подстановки варианта (6+8)+3 и обработки таблицы обычным способом приходим к благополучному завершению задачи.

Второй вариант: вернемся к таблице, полученной после выявления сочетания (7+3)+5 в строках 456 и перейдем к исследованию столбцов ABC.

Здесь мы можем заметить, что пара (2+9) не может иметь место в ABC. Другие комбинации (2+4), (2+7), (9+4) и (9+7) дают синхронную тройку - триплет в A4+A5+A6 и B1+B2+B3, что неприемлемо. Остается одна приемлемая пара (7+4). Причем 6 и 5 двигаются синхронно 7, значит они параобразующие, т.е. образуют какие-то пары, но не 5+6.

Составим список возможных пар и их сочетаний с одиночками:

Сочетание (6+3)+8 не проходит, т.к. иначе образуется недопустимая тройка-триплет в одном столбце (6+3+8), о чем уже говорили и в чем можем убедиться еще раз, проверив все варианты. Из кандидатов на одиночки больше всех очков набирает цифра 3, а наиболее вероятное из всех приведенных сочетаний: (6+8)+3, т.е. (С4=6 + C5=8) + C6=3, что дает:

Далее самый вероятный кандидат на одиночку либо 2, либо 9 (по 6 баллов), однако в любом из этих случаев остается в силе кандидат 1 (4 балла). Начнем с (5+29)+1, где 1 асинхронно 5, т.е. поставим 1 из В5=1 в качестве асинхронной одиночки во все столбцы ABC:

В блоке 7, столбец A, возможны лишь варианты (5+9)+3 и (5+2)+3. Но мы лучше обратим внимание на то, что в строках 1-3 теперь проявились пары (4+5) и (8+9). Их подстановка приводит к быстрому результату, т.е. к завершению задачи после обработки таблицы обычными средствами.

Ну а теперь, потренировавшись на предыдущих вариантах, мы можем попробовать решить задачу Арто Инкала без привлечения статистических оценок.

Снова возвращаемся в исходное положение:

В блоках 4-6 возможны пары (3+7) и (3+9). Если принять (3+9), то получится недопустимое синхронное вращение триплета (3+7+9), так что для подстановки в таблицу имеем только вариант (7+3):

5 здесь, как мы видим, одиночка, 6 – параобразующая. Допустимые варианты в ABC5: (2+1)+8, (2+1)+9, (8+1)+9, (8+1)+2, (9+1)+8, (9+1)+2. Но (2+1) асинхронна (7+3), поэтому остаются (8+1)+9, (8+1)+2, (9+1)+8, (9+1)+2. В любом случае 1 является синхронной (7+3) и, следовательно, параобразующей. Подставим 1 в этом качестве в таблицу:

Цифра 6 здесь является параобразующей в бл. 4-6, но бросающейся в глаза пары (6+4) нет в списке допустимых пар. Следовательно четверка в A4=4 асинхронна 6:

Так как D4+E4=(8+1) и согласно анализу вращения образует эту пару, то получаем:

Если ячейки C456=(6+3)+8, то B789=683, т.е. получится синхронная тройка-триплет, так что остается вариант (6+8)+3 и результат его подстановки:

B2=3 здесь одиночка, С1=5 (асинхронная 3) - параобразующая, A2=8 - также параобразующая. В3=7 может быть и синхронной и асинхронной. Теперь мы можем проявить себя и на более сложных приемах. Натренированным взглядом (или хотя бы при проверке на компьютере) мы видим, что при любом статусе В3=7 – синхронном или асинхронном – мы получаем один и тот же результат A1=1. Следовательно, мы можем подставить это значение в A1 и далее уже более обычными простыми средствами завершить нашу, вернее Арто Инкала, задачу:

Так или иначе, мы смогли рассмотреть и даже проиллюстрировать три общих подхода на пути решения проблем: определить точку понимания проблемы (не предположительный или слепо декларируемый, а реальный момент, начиная с которого мы можем говорить о понимании проблемы), выбрать модель, позволяющую реализовать понимание посредством натурного или мысленного эксперимента и – это в-третьих – довести степень понимания и восприятия достигнутых при этом результатов до состояния самоочевидности и простоты. Есть еще и четвертый подход, который применяю лично я.

У каждого человека случаются состояния, когда стоящие перед ним интеллектуальные задачи и проблемы решаются более легко, чем это бывает обычно. Эти состояния вполне можно воспроизводить. Для этого надо овладеть техникой отключения мыслей. Сначала хотя бы на доли секунды, затем, все более растягивая этот отключающий момент. Далее рассказывать, вернее рекомендовать, что-то в этом отношении не могу, потому что продолжительность применения этого метода дело сугубо личное. Но я прибегаю к этому способу порой надолго, когда передо мной встает проблема, к которой я не вижу вариантов того, как к ней можно подступиться и решить. В результате, раньше или позже из кладовых памяти выплывает подходящий прообраз модели, которая проясняет суть того, что требуется разрешить.

Задачу Инкала я решил несколькими способами, в том числе описанными в предыдущих статьях. И всегда в той или иной мере использовал этот четвертый подход с отключением и последующей концентрацией умственных усилий. Самое быстрое решение задачи я получил простым перебором – что называется "методом тыка" – правда, с использованием лишь "длинных" вариантов: тех, что могли быстро привести к выходу на положительный или отрицательный результат. Другие варианты отымали у меня больше времени, потому что основное время уходило на хотя бы черновую отработку технологии применения этих вариантов.

Хороший также вариант в духе четвертого подхода: настраиваться на решение задач судоку, подставляя лишь по единственной цифре в ячейку в процессе решения задачи. То есть, большая часть задачи и ее данных "прокручиваются" в уме. Именно так и происходит основная часть процесса решения интеллектуальных проблем, и этот навык следует тренировать ради расширения своих возможностей в решении проблем. Я, например, не профессиональный решатель судоку. У меня иные задачи. Но, тем не менее, хочу поставить перед собой такую цель: обрести умение решать задачи судоку повышенной сложности, без рабочей таблицы и не прибегая к подстановке более одной цифры в одну пустую клетку. При этом допускается любой способ решения судоку, включая и простой перебор вариантов.

О переборе вариантов я вспоминаю здесь не случайно. Любой подход к решению задач судоку предполагает в своем арсенале набор определенных способов, включая тот или иной вид перебора. При этом любой из способов, применяемых в судоку в частности или при решении любых других проблем, имеет свою область его эффективного применения. Так, при решении относительно простых задач судоку наиболее эффективны простые "базовые" способы, описанные в многочисленных статьях по этой теме в интернете, а более сложный "метод вращения" оказывается здесь зачастую бесполезным, потому что он лишь усложняет ход простого решения и при этом какой-то новой информации, проявляющейся в ходе решения задачи, не дает. Но в наиболее сложных случаях, как задача Арто Инкала, "метод вращения" может играть ключевую роль.

Судоку в моих статьях – лишь иллюстративный пример подходов к решению проблем. Среди решенных мною задач есть и на порядок посложнее, чем судоку. Например, расположенные на нашем сайте компьютерные модели работы котлов и турбин. О них я тоже был бы не против рассказать. Но пока я выбрал именно судоку, чтобы достаточно наглядным образом показать своим молодым согражданам возможные пути и этапы продвижения к конечной цели решаемых проблем.

На сегодня пока все.

Судоку - весьма интересная головоломка. Необходимо расставить цифры от 1 до 9 в поле таким образом, чтобы каждая строка, столбец и блок 3 х 3 клетки содержали все цифры, и при этом они не должны повторяться. Рассмотрим пошаговую инструкцию, как играть в судоку, основные методы и стратегию решения.

Алгоритм решения: от простого к сложному

Алгоритм решения игры разума судоку довольно прост: необходимо повторять следующие шаги до полного решения задачи. Постепенно переходите от самых простых шагов к более сложным, когда первые уже не позволяют открыть ячейку или исключить кандидата.

Одиночные кандидаты

Прежде всего, для более наглядного объяснения того, как играть в судоку, введем систему нумерации блоков и ячеек поля. Как ячейки, так и блоки нумеруются сверху вниз и слева направо.

Начнем рассматривать наше поле. Для начала необходимо отыскать одиночных кандидатов на место в ячейке. Они могут быть скрытыми или явными. Рассмотрим возможных кандидатов шестого блока: мы видим, что лишь в одной из пяти свободных ячеек присутствует уникальная цифра, следовательно, четверку можно смело вписывать в четвертую ячейку. Рассматривая этот блок дальше, можно сделать вывод: во второй ячейке должна быть цифра 8, так как после исключения четверки восьмерка в блоке больше нигде не встречается. С таким же обоснованием ставим цифру 5.

Внимательно просматривайте все возможные варианты. Взглянув на центральную ячейку пятого блока, обнаружим, что кроме цифры 9 там не может быть больше никаких вариантов - это явный одиночный кандидат для данной клетки. Девятку можно вычеркнуть из остальных ячеек этого блока, после чего с легкостью проставляются остальные цифры. По такому же методу проходим по ячейкам других блоков.

Как обнаружить скрытые и явные «голые пары»

Проставив необходимые цифры в четвертом блоке, вернемся к незаполненным ячейкам шестого блока: очевидно, что цифра 6 должна находиться в третьей клетке, а 9 - в девятой.

Понятие «голая пара» присутствует только в игре судоку. Правила их обнаружения следующие: если в двух ячейках одного блока, строки или столбца присутствует идентичная пара кандидатов (и только эта пара!), то остальные ячейки группы их иметь не могут. Объясним это на примере восьмого блока. Проставив в каждую клетку возможных кандидатов, обнаруживаем явную «голую пару». Цифры 1 и 3 присутствуют во второй и пятой ячейках этого блока, и там и там присутствует всего лишь по 2 кандидата, следовательно, из остальных ячеек их можно смело исключать.

Завершение разгадывания головоломки

Если вы усвоили урок того, как играть в судоку, и шаг за шагом выполняли вышеперечисленные указания, то у вас должна получиться примерно такая картина, как на этом поле:

Здесь можно обнаружить одиночных кандидатов: единица в седьмой ячейке девятого блока и двойка в четвертой ячейке третьего блока. Попробуйте решить головоломку до конца. Теперь сравните полученный результат с правильным решением.

Получилось? Поздравляем, ведь это значит, что вы успешно усвоили уроки того, как играть в судоку, и научились разгадывать простейшие головоломки. Существует немало разновидностей этой игры: судоку разных размеров, судоку с дополнительными областями и дополнительными условиями. Игровое поле может варьироваться от 4 х 4 до 25 х 25 клеток. Вы можете встретить головоломку, в которой цифры не могут повторяться и в дополнительной области, например, по диагонали.

Начинайте с простых вариантов и постепенно переходите к более сложным, ведь с тренировками приходит и опыт.

В этой статье разберём подробно каким образом решать сложные судоку на примере диагонального судоку.

Нам выпадает условие номер 437, которое показано на рисунке 1. И сразу бросается в глаза первый квадрат, он самый насыщенный на открытые цифры. Не хватает цифр 1, 3,4,9. Но так как горизонталь а тройку уже содержит, то цифра три ставится на с1. Остальные мы точно поставить не можем. Потому рассмотрим что у нас ещё есть. К примеру вертикаль 4 и здесь цифра четыре может стоять только на b4, из за наличия четвёрки в пятом квадрате и на горизонталь с. Остальные цифры мы пока ставить не будем.

Все приёмы и методы, которые мы будем применять далее относятся как к решению простых, так и сложных судоку.

А что у нас на горизонтали b? Тут не хватает тройки и стоять она может только на b8. (Во втором квадрате она уже есть и на вертикали 9). И если внимательно рассмотреть дальше горизонталь b, то мы обнаружим, что у нас есть скрытая одиночка - цифра 9 на клетке b9. Потому как остальные кандидаты (это 1 и 5) на этой клетке стоять не могут!

Что мы можем дальше сделать? Если рассмотреть квадрат пять. Тут цифры 3 и 5 могут быть либо на d5 либо на e6. Значит для остальных цифр эти клетки не рассматриваем.Исходя из этого для единички остаётся только одно место - клетка d6.

Результат наших действий на рисунке 2. Благодаря проведённому нами анализу ряд b проставляется полностью. Единица на b5, пятёрка на b6. Что даёт нам право расставить 3 и 5 в пятом квадрате!

Продолжим анализ пятого квадрата. В нём не хватает цифры 7, её же нет на главных диагоналях, а что самое интересное на вертикали 4. Благодаря этой самой вертикали мы можем точно сказать что цифра семь в пятом квадрате может стоять либо на f4 или e4. Так как горизонтали с и d семёрку уже содержат. А на е5 она не может стоять из за вертикали 4. Дальше обратимся к главным горизонталям. И тут семёрки сразу расставляются! На i9 и на f4.

Что у нас получилось можно увидеть на рисунке 3. Дальше продожим анализ главных диагоналей. Если рассмотреть идущую с клетки а1, то в ней не хватает двойки, которая ставится только на h8. Ещё в этой диагонали не хватает 1, 8 и 9 . Единичка может стоять только на а1, ставим быстренько её! А восьмёрка на d4 стоять не может, так как она есть на горизонтали d уже. Расставляем - d4 -9, e5 -8.

А вот теперь мы можем полностью заполнить пятый и первый квадраты! Что у нас получилось смотрим на рисунке 4.

Обратите внимание на вертикаль 3. Тут нужно расставить 1, 6, 7. Единица ставится только на f3, а исходя из этого расставляются остальные - e3 -7, h3-6. Дальше на очереди у нас вертикаль 9, так как она расставляется просто сказочно. d9-2, g9-6, h9-8.

А что если нам проверить на открытые одиночки?! К примеру, цифра три смело ставится на клетки d2 и h5. Хотя дальнейший анализ одиночек ничего не даёт. Тогда обратимся к оставшейся диагонали. У ннеё не хватает 6, 2, 4. Цифра шесть может быть только на c7. Остальное уже просто заполнить.

А почему у нас вертикаль 4 не проставлена до конца? Исправляем. с4 -8.

Результат наших изысканий на рисунке5. А теперь заполним горизонталь с. с8-1, с5-9, с6-2. И это всё исходя из наличия этих цифр в других вертикалях. Основываясь на горизонтали с легко заполнить горизонталь d. d1-6, d7 -4. Дальше совсем просто заполняется третий квадрат. А вот второй квадрат пока не заполнится, хотя так же только два кандидата - шестёрка и семёрка. Но по вертикалям пять и шесть они не встречаются и потому пока отложим их.

Проанализировав все вертикали и горизонтали мы приходим к выводу, что однозначно поставить нельзя ни одной цифры. Потому переходим к рассмотрению квадратов. Обратимся к шестому квадрату. Тут не хватает 5,6,8,9. Но цифры 6 и 8 мы точно можем поставить на клетки f7 и f8. Благодаря нашему анализу горизонталь f проставляется вся! f1 -9, f2 -5. И что мы тут видим - четвёртый квадрат заполняется весь! е1- 4, е2 -2.

Что у нас получилось можно посмотреть на рисунке 6. Теперь обратимся к квадрату девять. Здесь у нас появляется одна открытая одиночка - цифра один на i7. Благодаря чему мы можем поставить единичку в седьмом квадрате на g2. Восьмёрка на i2.

Итак, сегодня я научу вас решать судоку .

Для наглядности возьмем конкретный пример и рассмотрим основные правила:

Правила решения судоку:

Желтым я выделил строку и столбец. Первое правило в каждой строке и каждом столбце могут быть цифры от 1 до 9, причем они не могут повторяться. Короче говоря – 9 клеток, 9 цифр – поэтому в 1-м и том же столбце не может быть 2-х пятерок, восьмерок и т.д. Аналогично для строк.

Теперь я выделил квадраты – это второе правило . В каждом квадрате могут быть цифры от 1-го до 9 причем они не повторяются. (Так же как и в строках и столбцах). Квадраты выделены жирными линиями.

Отсюда имеем общее правило для решения судоку : ни в строках , ни в столбцах ни в квадратах цифры не должны повторяться.

Ну что ж, давайте теперь попробуем его решить:

Я выделил единицы зеленым и показал направление, куда мы смотрим. А именно – нас интересует последний верхний квадрат. Можно заметить, что во 2-м и 3-м ряду этого квадрата не могут быть единицы иначе будет повторение. Значит – единица вверху:

Легко находится и двойка:

Теперь воспользуемся найденной только что двойкой:

Надеюсь, алгоритм поиска стал понятен, поэтому с этого момента буду рисовать быстрее.

Смотрим на 1-й квадрат 3-й строки (внизу):

Т.к. у нас там осталось 2 свободных клетки, то в каждой из них может быть одна из двух цифр: (1 или 6):

Это значит, что в столбце, который я выделил не может больше быть ни 1 ни 6 – значит в верхним квадрате ставим 6.

За неимением времени на этом и остановлюсь. Очень надеюсь, что логику вы уловили. Кстати, я взял не самый простой пример, в котором скорее всего не будут сразу видны все решения однозначно, а поэтому лучше пользоваться карандашом. Мы пока не знаем насчет 1 и 6 в нижнем квадрате, поэтому их рисуем карандашом – аналогично в верхнем квадрате будут карандашом нарисованы 3 и 4.

Если ещё немного порассуждать, используя правила - избавимся от вопроса где 3, а где 4:

Да, кстати, если вам какой-то момент показался непонятным – напишите, я поясню подробнее. Удачи с разгадыванием судоку.


ВКонтакте Facebook Одноклассники

Для тех, кому нравится решать загадки cудоку самостоятельно и неспешно, формула, позволяющая быстро вычислить ответы, может показаться признанием слабости или жульничеством

Но для тех, кому разгадывание судоку стоит слишком больших усилий, это может быть буквально идеальным решением.

Два исследователя разработали математический алгоритм, который позволяет решать судоку очень быстро, без предположений и перебора с возвратом.

Исследователи комплексных сетей Золтан Торожкай и Мария Эркси-Раваз из Университета Нотр-Дама также смогли объяснить, почему некоторые загадки судоку более сложные, чем другие. Единственный недостаток в том, что для того, чтобы понять, что они предлагают, нужна степень доктора математики.


Вы можете решить эту головоломку? Она создана математиком Арто Инкалой, и, как утверждают, это самая сложная судоку в мире. Фото с сайта nature.com

Торожкай и Эркси-Раваз начали анализировать судоку как часть своего исследования теории оптимизации и вычислительной сложности. Они говорят, что большинство любителей судоку используют для решения этих задач подход «грубой силы», основанный на технике предположения. Таким образом, любители судоку вооружаются карандашом и пробуют все возможные комбинации чисел, пока не будет найден правильный ответ. Этот метод неизбежно приведет к успеху, но он трудоемок и занимает много времени.

Вместо этого Торожкай и Эркси-Раваз предложили универсальный аналоговый алгоритм, который абсолютно детерминирован (не использует предположение или перебор) и всегда находит правильное решение задачи, причем довольно быстро.


Исследователи использовали «детерминированный аналоговый решатель», чтобы заполнить эту судоку. Фото с сайта nature.com

Исследователи также обнаружили, что время, которое требуется, чтобы решить головоломку с использованием их аналогового алгоритма, коррелируется со степенью сложности задачи, которая оценивается человеком. Это вдохновило их на то, чтобы развивать шкалу ранжирования для трудности загадки или проблемы.

Они создали шкалу от 1 до 4, где 1 - «легко», 2 - «средняя степень сложности», 3 - «сложно», 4 - «очень сложно». Для решения головоломки с рейтингом 2 требуется в среднем в 10 раз больше времени, чем для задачки с рейтингом 1. Согласно этой системе, самая сложная загадка из известных до сих пор имеет рейтинг 3.6; более сложные задачи судоку пока неизвестны.


Теория начинается с картографии вероятностей для каждого отдельного квадрата. Фото с сайта nature.com

«Я не интересовался судоку, пока мы не начали работать над более общим классом выполнимости Булевых проблем, - говорит Торожкай. - Так как судоку - часть этого класса, латинский квадрат 9-го порядка оказался для нас хорошим полем для испытаний, так я с ними и познакомился. Меня и многих исследователей, изучающих такие проблемы, захватывает вопрос, как далеко мы, люди, способны зайти в решении судоку, детерминировано, без перебора, который является выбором наугад, и, если догадка не верна, нужно вернуться на шаг или на несколько шагов назад и начать сначала. Наша аналоговая модель решения детерминирована: в динамике нет никакого случайного выбора или возвращения».


Теория хаоса: степень сложности загадок показывается здесь как хаотическая динамика. Фото с сайта nature.com

Торожкай и Эркси-Раваз полагают, что их аналоговый алгоритм потенциально подходит для применения к решению большого количества разнообразных задач и проблем в промышленности, информатике и вычислительной биологии.

Опыт исследования также сделал Торожкая большим любителем судоку.

«У моей жены и у меня есть несколько приложений судоку на наших iPhone, и мы, должно быть, сыграли уже тысячи раз, соревнуясь за меньшее время на каждом уровне, - говорит он. - Она часто интуитивно видит комбинации паттернов, которых я не замечаю. Я должен их выводить. Для меня становится невозможным решить многие головоломки, которые наша шкала категоризирует как трудные или очень трудные, без того, чтобы записывать вероятности карандашом».

Методология Торожкая и Эркси-Раваз была впервые опубликована в журнале Nature Physics, а затем - в журнале Nature Scientific Reports.