Зарождение вселенной теория большого взрыва. Суперсила. Поиски единой теории природы

Теория Большого взрыва стала почти такой же общепринятой космологической моделью, как и вращение Земли вокруг Солнца. Согласно теории, около 14 млрд лет назад спонтанные колебания в абсолютной пустоте привели к появлению Вселенной. Нечто, сравнимое по размеру с субатомной частицей, расширилось до невообразимых размеров за доли секунды. Но в этой теории существует много проблем, над которыми бьются физики, выдвигая всё новые и новые гипотезы.


Что не так с теорией Большого взрыва

Из теории следует, что все планеты и звёзды образовались из пыли, размётанной по космосу в результате взрыва. Но что предшествовало ему, неясно: здесь наша математическая модель пространства-времени перестаёт работать. Вселенная возникла из начального сингулярного состояния, к которому не применить современную физику. Теория также не рассматривает причины возникновения сингулярности или материи и энергии для её возникновения. Считается, что ответ на вопрос о существовании и происхождении начальной сингулярности даст теория квантовой гравитации.

Большинство космологических моделей предсказывают, что полная Вселенная имеет размер намного больший, чем наблюдаемая часть - сферическая область с диаметром примерно 90 млрд световых лет. Мы видим только ту часть Вселенной, свет от которой успел достичь Земли за 13,8 млрд лет. Но телескопы становятся всё лучше, мы обнаруживаем всё более дальние объекты, и пока нет оснований считать, что этот процесс остановится.

С момента Большого взрыва Вселенная расширяется с ускорением . Сложнейшая загадка современной физики - вопрос о том, что вызывает ускорение. Согласно рабочей гипотезе, во Вселенной содержится невидимая составляющая, называемая «тёмной энергией». Теория Большого взрыва не объясняет, будет ли Вселенная расширяться бесконечно, и если да, то к чему это приведёт - к её исчезновению или чему-то ещё.

Хотя ньютоновскую механику потеснила релятивистская физика, её нельзя назвать ошибочной. Тем не менее восприятие мира и модели для описания Вселенной полностью изменились. Теория Большого взрыва предсказала ряд вещей, которые не были известны до того. Таким образом, если на её место придёт другая теория, то она должна быть похожей и расширить понимание мира.

Мы остановимся на самых интересных теориях, описывающих альтернативные модели Большого взрыва.


Вселенная как мираж чёрной дыры

Вселенная возникла благодаря коллапсу звезды в четырёхмерной Вселенной, считают учёные из Института теоретической физики «Периметр». Результаты их исследования опубликовал журнал Scientific American . Ниайеш Афшорди, Роберт Манн и Рази Пурхасан говорят, что наша трёхмерная Вселенная стала подобием «голографического миража» при схлопывании четырёхмерной звезды. В отличие от теории Большого взрыва, согласно которой Вселенная возникла из чрезвычайно горячего и плотного пространства-времени, где не применяются стандартные законы физики, новая гипотеза о четырёхмерной вселенной объясняет как причины зарождения, так и её стремительного расширения

Согласно сценарию, сформулированному Афшорди и его коллегами, наша трёхмерная Вселенная - это своеобразная мембрана, которая плывёт сквозь ещё более объёмную вселенную, существующую уже в четырёх измерениях. Если бы в этом четырёхмерном космосе существовали свои четырёхмерные звёзды, они бы тоже взрывались, как и трёхмерные в нашей Вселенной. Внутренний слой становился бы чёрной дырой, а внешний выбрасывался бы в пространство.

В нашей Вселенной чёрные дыры окружены сферой, называемой горизонтом событий. И если в трёхмерном пространстве эта граница двухмерная (как мембрана) , то в четырёхмерной вселенной горизонт событий будет ограничен сферой, существующей в трёх измерениях. Компьютерное моделирование коллапса четырёхмерной звезды показало, что её трёхмерный горизонт событий будет постепенно расширяться. Именно это мы и наблюдаем, называя рост 3D-мембраны расширением Вселенной, полагают астрофизики.


Большая заморозка

Альтернативой Большому взрыву может быть Большая заморозка. Команда физиков из Мельбурнского университета во главе с Джеймсом Кватчем представила модель рождения Вселенной, которая больше напоминает постепенный процесс заморозки аморфной энергии, чем её выплеск и расширение в трёх направлениях пространства.

Бесформенная энергия, по мнению учёных, подобно воде охладилась до кристаллизации, создав привычные три пространственных и одно временное измерение.

Теория Большой заморозки ставит под сомнение принятое в настоящее время утверждение Альберта Эйнштейна о непрерывности и плавности пространства и времени. Не исключено, что пространство имеет составные части - неделимые стандартные блоки наподобие крошечных атомов или пикселей в компьютерной графике. Эти блоки настолько малы, что их невозможно наблюдать, однако, следуя новой теории, можно обнаружить дефекты, которые должны преломлять потоки других частиц. Учёные вычислили такие эффекты с помощью математического аппарата, а теперь попытаются обнаружить их экспериментально.


Вселенная без начала и конца

Ахмед Фараг Али из Университета Бенха в Египте и Саурия Дас из Университета Летбриджа в Канаде предложили новое решение проблему сингулярности, отказавшись от Большого взрыва. Они привнесли в уравнение Фридмана, описывающее расширение Вселенной и Большой взрыв, идеи известного физика Дэвида Бома . «Удивительно, что небольшие поправки потенциально могут решить так много вопросов», - говорит Дас.

Полученная модель объединила в себе общую теорию относительности и квантовую теорию. Она не только отрицает сингулярность, предшествовавшую Большому взрыву, но и не допускает того, что Вселенная со временем сожмётся обратно в первоначальное состояние. Согласно полученным данным, Вселенная имеет конечный размер и бесконечное время жизни. В физическом выражении модель описывает Вселенную, наполненную гипотетической квантовой жидкостью, которая состоит из гравитонов - частиц, обеспечивающих гравитационное взаимодействие.

Учёные также утверждают, что их выводы соотносятся с последними результатами измерения плотности Вселенной.


Бесконечная хаотическая инфляция

Термин «инфляция» обозначает стремительное расширение Вселенной, происходившее по экспоненте в первые мгновения после Большого взрыва. Сама по себе теория инфляции не опровергает теорию Большого взрыва, а лишь по-другому интерпретирует её. Эта теория решает несколько фундаментальных проблем физики.

Согласно инфляционной модели, вскоре после зарождения Вселенная очень короткое время расширялась по экспоненте: её размер многократно удваивался. Учёные полагают, что за 10 в -36 степени секунд Вселенная увеличилась в размерах как минимум в 10 в 30–50 степени раз, а возможно, и больше. В конце инфляционной фазы Вселенная заполнилась сверхгорячей плазмой из свободных кварков, глюонов, лептонов и высокоэнергетичных квантов.

Концепция подразумевает , что в мире существует множество изолированных друг от друга вселенных с разным устройством

Физики пришли к выводу, что логика инфляционной модели не противоречит идее постоянного множественного рождения новых вселенных. Квантовые флуктуации - такие же, как те, из-за которых появился наш мир - могут возникать в любом количестве, если для этого есть подходящие условия. Вполне возможно, что наше мироздание вышло из флуктуационной зоны, сформировавшейся в мире-предшественнике. Можно также допустить, что когда-нибудь и где-нибудь в нашей Вселенной образуется флуктуация, которая «выдует» юную вселенную совершенно другого рода. По такой модели дочерние вселенные могут отпочковываться непрерывно. При этом вовсе не обязательно, что в новых мирах устанавливаются одни и те же физические законы. Концепция подразумевает, что в мире существует множество изолированных друг от друга вселенных с разным устройством.


Циклическая теория

Пол Стейнхардт, один из физиков, заложивших основы инфляционной космологии, решил развить эту теорию и дальше. Учёный, который возглавляет Центр теоретической физики в Принстоне, совместно с Нэйлом Тьюроком из Института теоретической физики «Периметр» изложил альтернативную теорию в книге Endless Universe: Beyond the Big Bang («Бесконечная Вселенная: За гранью Большого взрыва»). Их модель основана на обобщении теории квантовых суперструн, известной как М-теория. Согласно ей, физический мир имеет 11 измерений - десять пространственных и одно временное. В нём «плавают» пространства меньших размерностей, так называемые браны (сокращение от «мембраны»). Наша Вселенная - просто одна из таких бран.

Модель Стейнхардта и Тьюрока утверждает, что Большой взрыв произошёл в результате столкновения нашей браны с другой браной - неизвестной нам вселенной. По этому сценарию столкновения происходят бесконечно. Согласно гипотезе Стейнхардта и Тьюрока, рядом с нашей браной «плавает» ещё одна трёхмерная брана, отделённая крошечным расстоянием. Она также расширяется, уплощается и пустеет, но через триллион лет браны начнут сближаться и в конце концов столкнутся. При этом выделится огромное количество энергии, частиц и излучения. Этот катаклизм запустит очередной цикл расширения и охлаждения Вселенной. Из модели Стейнхардта и Тьюрока следует, что эти циклы были и в прошлом и обязательно повторятся в будущем. С чего эти циклы начались, теория умалчивает.


Вселенная
как компьютер

Ещё одна гипотеза об устройстве мироздания гласит, что весь наш мир - это не более чем матрица или компьютерная программа. Идею о том, что Вселенная представляет собой цифровой компьютер, впервые выдвинул немецкий инженер и пионер компьютеростроения Конрад Цузе в книге Calculating Space («Вычислительное пространство»). Среди тех, кто также рассматривал Вселенную как гигантский компьютер, значатся физики Стивен Вольфрам и Герард "т Хоофт.

Теоретики цифровой физики предполагают, что Вселенная - по сути информация, и, следовательно, она вычислима. Из этих предположений следует, что Вселенную можно рассматривать как результат работы компьютерной программы или цифрового вычислительного устройства. Этот компьютер может быть, например, гигантским клеточным автоматом или универсальной машиной Тьюринга .

Косвенным доказательством виртуальной природы Вселенной называют принцип неопределённости в квантовой механике

Согласно теории, всякий предмет и событие физического мира происходит из постановки вопросов и регистрации ответов «да» или «нет». То есть за всем, что нас окружает, скрывается некий код, аналогичный бинарному коду компьютерной программы. А мы - своего рода интерфейс, с помощью которого появляется доступ к данным «вселенского интернета». Косвенным доказательством виртуальной природы Вселенной называют принцип неопределённости в квантовой механике: частицы материи могут существовать в неустойчивой форме, а «закрепляются» в конкретном состоянии только при наблюдении за ними.

Последователь цифровой физики Джон Арчибальд Уилер писал : «Не было бы неразумным представить, что информация находится в ядре физики так же, как в ядре компьютера. Всё из бита. Иными словами, всё сущее - каждая частица, каждое силовое поле, даже сам пространственно-временной континуум - получает свою функцию, свой смысл и, в конечном счёте, само своё существование».

«Для меня жизнь слишком коротка, чтобы беспокоиться о вещах мне неподвластных и, может, даже несбыточных. Вот спрашивают: «А вдруг Землю поглотит чёрная дыра, или возникнет искажение пространства-времени - это же повод для волнения?» Мой ответ: «нет», - потому что мы об этом узнаем, только когда оно достигнет нашего… нашего места в пространстве-времени. Мы получаем толчки, когда природа решает, что настало время: будь то скорость звука, скорость света, скорость электрических импульсов - мы всегда будем жертвами временной задержки между окружающей нас информацией и нашей способностью её получить »

Нил Деграсс Тайсон

Время – удивительная штука. Оно дарит нам прошлое, настоящее и будущее. Из-за времени у всего, что нас окружает, есть возраст. Например, возраст Земли составляет примерно 4,5 миллиарда лет. Примерно столько же лет назад загорелась и ближайшая к нам звезда – Солнце. Если эта цифра кажется вам умопомрачительной, не стоит забывать, что задолго до образования нашей родной Солнечной системы появилась галактика, в которой мы живем – Млечный путь. По последним оценкам ученых , возраст Млечного пути составляет 13,6 миллиардов лет. Но ведь мы точно знаем, что у галактик тоже есть прошлое, а космос просто огромен, поэтому нужно смотреть еще дальше. И это размышление неизбежно приводит нас к моменту, когда все началось – Большому Взрыву.

Эйнштейн и Вселенная

Восприятие окружающего мира людьми всегда было неоднозначным. Кто-то до сих пор не верит в существование огромной Вселенной вокруг нас, кто-то считает Землю плоской. До научного прорыва в 20 веке существовала всего пара версий происхождения мира. Приверженцы религиозных взглядов верили в божественное вмешательство и творение высшего разума, несогласных иногда сжигали. Была и другая сторона, которая верила, что окружающий нас мир, равно как и Вселенная, бесконечен.

Для многих людей все изменилось тогда, когда в 1917 году с докладом выступил Альберт Эйнштейн, представив широкой публике труд своей жизни – Общую теорию относительности. Гений 20-го века связал пространство-время с материей космоса с помощью выведенных им уравнений. В результате этого получалось, что Вселенная конечна, неизменна в размерах и имеет форму правильного цилиндра.

На заре технического прорыва опровергнуть слова Эйнштейна не мог никто, поскольку его теория была слишком сложна даже для величайших умов начала 20 века. Поскольку других вариантов не было, модель цилиндрической стационарной Вселенной была принята научным сообществом как общепринятая модель нашего мира. Впрочем, прожить она смогла всего несколько лет. После того, как физики смогли оправиться от научных трудов Эйнштейна и начали разбирать их по полочкам, параллельно с этим начали вноситься коррективы в теорию относительности и конкретные расчеты немецкого ученого.

В 1922 году в журнале «Известия физики» внезапно выходит статья российского математика Александра Фридмана, в которой тот заявляет, что Эйнштейн ошибся и наша Вселенная не стационарна. Фридман объясняет, что утверждения немецкого ученого относительно неизменности радиуса кривизны пространства – заблуждения, на самом деле радиус изменяется относительно времени. Соответственно, Вселенная должна расширяться.

Более того, здесь же Фридман привел свои предположения относительно того, как именно может расширяться Вселенная. Всего модели было три: пульсирующая Вселенная (предположение того, что Вселенная расширяется и сжимается с некоей периодичностью во времени); расширяющаяся Вселенная из массы и третья модель – расширение из точки. Поскольку в те времена других моделей не существовало, за исключением божественного вмешательства, то физики быстро взяли на заметку все три модели Фридмана и начали разрабатывать их в своем направлении.

Работа российского математика слегка уязвила Эйнштейна, и в том же году он публикует статью, в которой высказывает свои замечания относительно трудов Фридмана. В ней немецкий физик пытается доказать верность своих расчетов. Вышло это довольно неубедительно, и когда боль от удара по самооценке немного спала, Эйнштейн выпустил еще одну заметку в журнале «Известия физики», в которой сказал:

«В предыдущей заметке я подверг критике названную выше работу. Однако моя критика, как я убедился из письма Фридмана, сообщенного мне г-ном Крутковым, основывалась на ошибке в вычислениях. Я считаю результаты Фридмана правильными и проливающими новый свет ».

Ученым пришлось признать, что все три модели Фридмана появления и существования нашей Вселенной абсолютно логичны и имеют право на жизнь. Все три объясняются понятными математическими расчетами и не оставляют вопросов. Кроме одного: с чего бы Вселенной начинать расширяться?

Теория, которая изменила мир

Заявления Эйнштейна и Фридмана привели к тому, что ученое сообщество всерьез задалось вопросом происхождения Вселенной. Благодаря общей теории относительности появился шанс пролить свет на наше прошлое, и физики не преминули этим воспользоваться. Одним из ученых, попытавшимся представить модель нашего мира, стал астрофизик Жорж Леметр из Бельгии. Примечателен тот факт, что Леметр был католическим священником, но при этом занимался математикой и физикой, что для нашего времени настоящий нонсенс.

Жорж Леметр заинтересовался уравнениями Эйнштейна, и с их помощью смог вычислить, что наша Вселенная появилась в результате распада некоей суперчастицы, которая находилась вне пространства и времени до начала деления, которое можно фактически считать взрывом. При этом физики отмечают, что Леметр первым пролил свет на рождение Вселенной.

Теория взорвавшегося суператома устроила не только ученых, но также и духовенство, которое было очень недовольно современными научными открытиями, под которые приходилось придумать новые толкования Библии. Большой взрыв не вступал в существенные противоречия с религией, возможно на это повлияло воспитание самого Леметра, который посвятил свою жизнь не только науке, но и служению Богу.

22 ноября 1951 года Папа Римский Пий XII сделал заявление , что Теория большого взрыва не конфликтует с Библией и католическими догмами о возникновении мира. Православные священнослужители также заявили, что относятся к этой теории положительно. Эту теорию относительно нейтрально восприняли и приверженцы других религий, некоторые из них даже сказали, что в их священных писаниях есть упоминания о Большом Взрыве.

Впрочем, несмотря на то, что Теория Большого Взрыва на данный момент является общепринятой космологической моделью, она завела многих ученых в тупик. С одной стороны, взрыв суперчастицы отлично вписывался в логику современной физики, но с другой в результате такого взрыва могли образоваться, в основном, лишь тяжелые металлы, в частности железо. Но, как оказалось, Вселенная состоит, в основном, из сверхлегких газов – водорода и гелия. Что-то не сходилось, поэтому физики продолжили работу над теорией происхождения мира.

Изначально термина «Большой взрыв» не существовало. Леметр и другие физики предлагали лишь скучное название «динамическая эволюционирующая модель», что вызывало зевоту у студентов. Лишь в 1949 году на одной из своих лекций британский астроном и космолог Фрейд Хойл произнес:

«Эта теория основана на предположении, что Вселенная возникла в процессе одного-единственного мощного взрыва и потому существует лишь конечное время… Эта идея Большого взрыва кажется мне совершенно неудовлетворительной» .

С тех пор этот термин стал широко использоваться в научных кругах и представлении широкой общественности об устройстве Вселенной.

Откуда появились водород и гелий

Наличие легких элементов поставило физиков в тупик, и многие приверженцы Теории Большого Взрыва задались целью найти их источник. На протяжении многих лет им не удавалось добиться особых успехов, пока в 1948 году гениальный ученый Георгий Гамов из Ленинграда наконец не смог установить этот источник. Гамов был одним из учеников Фридмана, поэтому с удовольствием взялся за разработку теории своего преподавателя.

Гамов постарался представить жизнь Вселенной в обратном направлении, и отмотал время до того момента, когда она только начала расширяться. К тому времени, как известно, человечество уже открыло принципы термоядерного синтеза, поэтому теория Фридмана-Леметра получила право на жизнь. Когда Вселенная была совсем маленькой, она была очень горячей, согласно законам физики.

По мнению Гамова, спустя всего секунду после Большого взрыва, пространство новой Вселенной заполнили элементарные частицы, которые начали взаимодействовать друг с другом. В результате этого начался термоядерный синтез гелия , который смог рассчитать для Гамова математик из Одессы Ральф Ашер Альфер. Согласно подсчетам Альфера, уже спустя пять минут после Большого взрыва Вселенная была заполнена гелием на столько, что даже убежденным противникам Теории Большого Взрыва придется смириться и принять эту модель, как основную в космологии. Своими исследованиями Гамов не только открыл новые пути изучения Вселенной, но также воскресил теорию Леметра.

Несмотря на стереотипы об ученых, им нельзя отказать в романтизме. Свои исследования относительно теории Супергорячей Вселенной в момент Большого взрыва Гамов опубликовал в 1948 году в работе «Происхождение химических элементов». В качестве коллег-помощников он указал не только Ральфа Ашера Альфера, но и Ханса Бете – американского астрофизика и будущего лауреата Нобелевской премии. На обложке книги получилось: Альфер, Бете, Гамов. Ничего не напоминает?

Впрочем, несмотря на то, что труды Леметра получили вторую жизнь, физики до сих пор не могли ответить на самый волнующий вопрос: а что было до Большого Взрыва?

Попытки воскресить стационарную Вселенную Эйнштейна

Не все ученые были согласны с теорией Фридмана-Леметра, но, несмотря на это, им приходилось преподавать в университетах общепринятую космологическую модель. Например астроном Фред Хойл, который сам же и предложил термин «Большой Взрыв», на самом деле считал, что никакого взрыва не было, и посвятил свою жизнь попыткам это доказать.
Хойл стал одним из тех ученых, которые в наше время предлагают альтернативные взгляд на современный мир. Большинство физиков довольно прохладно относятся к заявлениям подобных людей, но это ничуть их не смущает.

Чтобы посрамить Гамова и его обоснования Теории Большого Взрыва, Хойл вместе с единомышленниками решили разработать свою модель происхождения Вселенной. За ее основу они взяли предложения Эйнштейна о том, что Вселенная стационарна, и внесли некоторые коррективы, предлагающие альтернативные причины расширения Вселенной.

Если приверженцы теории Леметра-Фридмана считали, что Вселенная возникла из одной единственной сверхплотной точки с бесконечно малым радиусом, то Хойл предположил, что материя образуется постоянно из точек, которые находятся между удаляющимися друг от друга галактиками. В первом случае, из одной частицы образовалась вся Вселенная, с ее бесконечным числом звезд и галактик. В другом случае, одна точка дает вещества столько, сколько достаточно для производства всего одной галактики.

Несостоятельность теории Хойла в том, что он так и не смог объяснить, откуда берется то самое вещество, которое продолжает создавать галактики, в которых находятся сотни миллиардов звезд. Фактически Фред Хойл предлагал всем поверить, что структура Вселенной возникает из ниоткуда. Несмотря на то, что многие физики пытались найти решение теории Хойла, никому так и не удалось этого сделать, и спустя пару десятилетий это предложение утратило свою актуальность.

Вопросы без ответов

На самом деле Теория Большого Взрыва также не дает нам ответы на многие вопросы. Например, в уме обычного человека не может уложиться тот факт, что вся окружающая нас материя некогда была сжата в одну точку сингулярности, которая по своим размерам намного меньше атома. И как так получилось, что эта суперчастица нагрелась до такой степени, что запустилась реакция взрыва.

До середины 20 века теория расширяющейся Вселенной так и не была подтверждена экспериментально, поэтому не имела широкого распространения в учебных заведениях. Все изменилось в 1964 году, когда двое американских астрофизиков — Арно Пензиас и Роберт Вильсон – не решили заняться исследованием радиосигналов звездного неба.

Сканируя излучение небесных тел, а именно Кассиопеи А (один из мощнейших источников радиоизлучения на звездном небе) ученые заметили какой-то посторонний шум, который постоянно мешал зафиксировать точные данные по излучению. Куда бы они ни направили свою антенну, в какое бы время суток они не начинали свои исследования – этот характерный и постоянный шум всегда преследовал их. Разозлившись до определенной степени, Пензиас и Вильсон решили изучить источник этого шума и неожиданно совершили открытие, которое изменило мир. Они открыли реликтовое излучение, которое является отголоском того самого Большого Взрыва.

Наша Вселенная остывает гораздо медленнее, чем чашка горячего чая, и реликтовое излучение свидетельствует о том, что некогда окружающая нас материя была очень горяча, и теперь охлаждается по мере расширения Вселенной. Таким образом, все теории, связанные с холодной Вселенной, остались за бортом, и на вооружение была окончательно принята Теория Большого Взрыва.

В своих трудах Георгий Гамов предполагал, что в космосе удастся обнаружить фотоны, которые существуют с момента Большого Взрыва, нужно лишь более совершенное техническое оснащение. Реликтовое излучение подтверждало все его предположения относительно существования Вселенной. Также с его помощью удалось установить, что возраст нашей Вселенной составляет примерно 14 миллиардов лет.

Как и всегда, при практическом доказательстве какой-либо теории, сразу возникает множество альтернативных мнений. Некоторые физики с насмешкой восприняли открытие реликтового излучения как свидетельство Большого Взрыва. Несмотря на то, что Пензиас и Вильсон стали лауреатами Нобелевской премии за свое историческое открытие, появилось множество несогласных с их исследованиями.

Основными аргументами в пользу несостоятельности расширения Вселенной стали несовпадения и логические ошибки. Например, взрыв равноускорил все галактики в космосе, однако вместо того, чтобы удаляться от нас, галактика Андромеды медленно, но верно приближается к Млечному Пути. Ученые предполагают, что эти две галактики столкнутся между собой всего через каких-то 4 миллиарда лет. К сожалению, человечество пока слишком молодо, чтобы ответить на этот и другие вопросы.

Теория равновесия

В наше время физики предлагают различные модели существования Вселенной. Многие из них не выдерживают даже простой критики, другие же получают право на жизнь.

В конце 20 века астрофизик из Америки Эдвард Трайон вместе со своим коллегой из Австралии Уорреном Керри предложили принципиально новую модель Вселенной, при этом сделали это независимо друг от друга. В основу своих исследований ученые положили предположение, что во Вселенной все уравновешено. Масса уничтожает энергию, и наоборот. Такой принцип стали называть принципом Нулевой Вселенной. В рамках этой Вселенной новое вещество возникает в точках сингулярности между галактиками, где притяжение и отталкивание материи уравновешено.

Теорию Нулевой Вселенной не разнесли в пух и прах потому, что спустя некоторое время ученые смогли открыть существование темной материи – загадочной субстанции, из которой почти на 27% состоит наша Вселенная. Еще 68,3% Вселенной составляет более таинственная и загадочная темная энергия.

Именно благодаря гравитационным эффектам темной энергии и приписывают ускорение расширения Вселенной. К слову, наличие темной энергии в космосе предсказал еще сам Эйнштейн, который видел, что в его уравнениях что-то не сходится, Вселенную не получалось сделать стационарной. Поэтому он ввел в уравнения космологическую постоянную – Лямбда-член, за что потом неоднократно себя винил и ненавидел.

Так получалось, что пустое в теории пространство во Вселенной все же заполнено неким особым полем, которое и приводит в действие модель Эйнштейна. В трезвом уме и согласно логике тех времен, существование такого поля было просто невозможным, но на деле немецкий физик просто не знал, как описать темную энергию.

***
Возможно, мы никогда не узнаем, как и из чего возникла наша Вселенная. Еще сложнее будет установить, что было до ее существования. Люди склонны бояться того, что не могут объяснить, поэтому не исключено, что до конца времен человечество будет верить в том числе и в божественное влияние на создание окружающего нас мира.

Говорят, что время – самая загадочная материя. Человек, сколько не пытается понять его законы и научиться управлять ими, всякий раз попадает впросак. Делая последний шаг к разгадке великой тайны, и считая, что она, практически, уже у нас в кармане, мы всякий раз убеждаемся, что она все так же неуловима. Однако человек – существо пытливое и поиск ответов на извечные вопросы для многих становится смыслом жизни.

Одной из таких тайн стало сотворение мира. Последователи «теории Большого взрыва», логично объясняющей происхождение жизни на Земле стали задаваться вопросом о том, что было до Большого взрыва, и было ли что-нибудь вообще. Тема для исследований благодатная, а результаты могут заинтересовать широкую общественность.

У всего на свете есть прошлое – у Солнца, Земли, Вселенной, но откуда взялось все это многообразие и что было до него?

Дать однозначный ответ вряд ли возможно, но выдвинуть гипотезы и поискать им доказательства вполне реально. В поисках истины, исследователи получили не один, а несколько ответов на вопрос «что было до Большого взрыва?». Самый популярный из них звучит несколько обескураживающе и довольно смело – Ничего. Возможно ли, что все сущее произошло из ничего? Что Ничто породило все существующее?

Собственно, это нельзя назвать абсолютной пустотой и там все равно происходят какие-то процессы? Все было порождено ничем? Ничто – полное отсутствие не только материи, молекул и атомов, но даже времени и пространства. Богатая почва для деятельности писателей-фантастов!

Мнения ученых об эпохе до Большого взрыва

Однако Ничто нельзя потрогать, к нему не применимы обычные законы, а значит, либо домысливать и выстраивать теории, либо попытаться создать условия, близкие к тем, в результате которых произошел Большой взрыв, и убедиться в правильности своих предположений. В специальных камерах, из которых были удалены частицы вещества, понизили температуру, приблизив к условиям космоса. Результаты наблюдений дали косвенные подтверждения научным теориям: ученые изучали среду, в которой теоретически мог возникнуть Большой взрыв, но назвать эту среду «Ничто» оказалось не совсем корректно. Происходящие мини-взрывы могли бы привести к более масштабному взрыву, породившему Вселенную.

Теории вселенных до Большого взрыва

Приверженцы иной теории утверждают, что до Большого взрыва существовали две другие Вселенные, развивавшиеся по собственным законам. Какими именно они были – ответить сложно, но согласно выдвигаемой теории, Большой взрыв произошел в результате их столкновения и привел к полному уничтожению прежних Вселенных и, одновременно, к рождению нашей, существующей и ныне.

Теория «сжатия» говорит о том, что Вселенная существует, и существовала всегда, меняются лишь условия ее развития, которые приводят к исчезновению жизни в одном регионе и возникновению в другом. Жизнь исчезает в результате «схлопывания» и возникает после взрыва. Как бы парадоксально это не звучало. Такая гипотеза имеет большое количество сторонников.

Есть еще одно предположение: в результате Большого взрыва из небытия возникла новая Вселенная и раздулась, словно мыльный пузырь, до гигантских размеров. В это время от нее отпочковывались «пузырьки», которые впоследствии, стали другими Галактиками и Вселенными.

Теория «естественного отбора» предполагает, что речь идет о «естественном космическом отборе», вроде того, о котором вещал Дарвин, только в более крупных размерах. У нашей Вселенной был свой предок, у него, в свою очередь, так же имелся свой предок. Согласно этой теории, нашу Вселенную породила Черная дыра. и представляют большой интерес для ученых. По этой теории для того, чтобы появилась новая Вселенная, необходимы механизмы «размножения». Таким механизмом и становится Черная дыра.

А может быть, правы те, кто считает, что по мере роста и развития наша Вселенная расширяется, идя навстречу Большому взрыву, который станет началом для новой Вселенной. Значит, когда-то давно, неизвестная и, увы, исчезнувшая Вселенная стала прародительницей нашей новой вселенной. Цикличность этой системы выглядит логично и приверженцев у данной теории немало.

До какой степени приблизились к истине последователи той или иной гипотезы – сказать сложно. Каждый выбирает то, что ближе по духу и пониманию. Религиозный мир дает на все вопросы свои ответы и укладывает картину создания мира в божественные рамки. Атеисты ищут ответы, стремясь докопаться до сути и потрогать своими руками эту самую суть. Можно удивиться, чем вызвано такое упорство в поисках ответа на вопрос о том, что было до Большого взрыва, ведь практическую пользу из этого знания извлечь довольно проблематично: человек не станет властелином Вселенной, по его слову и желанию не зажгутся новые звезды и не погаснут существующие. Но ведь так интересно то, что не изучено! Человечество бьется над разгадками тайн, и кто знает, быть может, рано или поздно, они дадутся человеку в руки. Вот только, как он этими тайными знаниями воспользуется?

Иллюстрации: КЛАУС БАХМАНН, журнал «GEO»

(25 votes, average: 4,84 out of 5)



Загадки Большого взрыва

Наша Вселенная возникла 13,7 миллиарда лет назад, порожденная Большим взрывом, и вот уже на протяжении нескольких поколений ученые пытаются понять этот феномен.

В конце 20-х годов XX века, Эдвин Хаббл открыл, что все видимые нами галактики разлетаются – словно осколки гранаты после взрыва, тогда же бельгийский астроном и богослов Жорж Леметр и выдвинул свою гипотезу (в 1931 г. она вышла на страницах «Nature»). Он считает что, история мироздания началась с того, что взорвался «первичный атом», и это породило время, пространство и материю (раньше, в начале 1920-х годов, советский ученый Александр Фридман, анализируя уравнения Эйнштейна, тоже пришел к выводу, что «Вселенная создавалась из точки» и на это ушло «десятки миллиардов наших обычных лет»).

Вначале астрономы решительно отвергли рассуждения бельгийского теолога. Потому как теория Большого взрыва как нельзя лучше сочеталась с христианской верой в Бога-Творца. В течении двух веков ученые пресекали проникновение в науку каких бы то ни было религиозных домыслов о «начале всех начал». И вот Бог, изгнанный из природы под мерное покачивание колесиков ньютоновской механики, неожиданно возвращается. Он грядет в пламени Большого взрыва, и трудно придумать более триумфальную картину его явления.


Однако проблема была не только в богословии – Большой взрыв не подчинялся законам точных наук. Важнейший момент истории Вселенной пребывал за гранью познания. В этой сингулярной (особой) точке, расположенной на оси пространства-времени, общая теория относительности переставала действовать, потому как давление, температура, плотность энергии и искривление пространства устремлялись в бесконечность, то есть теряли всякий физический смысл. В этой точке исчезали, превращались не в ноль, не в отрицательные величины, а в полное их отсутствие, в абсолютную беззначность, все эти секунды, метры и астрономические единицы. Эта точка – разрыв, который не преодолеть на ходулях логики или математики, дыра навылет во времени и пространстве.

Только в конце 1960-х годов Роджер Пенроуз и Стивен Хокинг убедительно показали, что в рамках теории Эйнштейна сингулярность Большого взрыва неизбежна. Однако это не смогло облегчить работу теоретиков. Как описать Большой взрыв? Что стало, к примеру, причиной этого события? Ведь если до него вообще не было времени, то вроде бы не могло быть и причины, породившей его.

Как мы понимаем теперь, для создания полной теории Большого взрыва, необходимо связать воедино учение Эйнштейна, описывающее пространство и время, с квантовой теорией, занимающейся элементарными частицами и их взаимодействием. Вероятно, может пройти не одно десятилетие, прежде чем удастся это сделать и вывести единую «формулу мироздания».

А откуда, к примеру, могло появится то грандиозное количество энергии, что породило этот взрыв невероятной силы? Возможно, она досталась нашей Вселенной от ее предшественницы, сжавшейся в сингулярную точку? Однако тогда откуда та ее получила? Или энергия была разлита в первородном вакууме, из которого – «пузырьком пены» – выскользнула наша Вселенная? Или же Вселенные старшего поколения передают энергию Вселенным младшего поколения посредством – тех сингулярных точек – в глубинах которых, возможно, зарождаются новые миры, которые нам никогда не увидеть? Как бы там ни было, Вселенная в таких моделях предстает «открытой системой», что не вполне соответствует «классической» картине Большого взрыва: «Не было ничего, и вдруг родилось мироздание».

Вселенная в момент образования была в чрезвычайно плотном и горячем состоянии.

А возможно, как считают некоторые из исследователей, наша Вселенная вообще… лишена энергии, точней, ее совокупная энергия равна нулю? Положительная энергия излучения, испускаемого веществом, накладывается на отрицательную энергию гравитации. Плюс на минус дает ноль. Этот пресловутый «0» кажется ключом к пониманию природы Большого взрыва. Из него – из «нуля», из «ничего» – мгновенно родилось все. Случайно. Спонтанно. Просто так. Ничтожно малое отклонение от 0 породило вселенскую лавину событий. Можно привести и такое сравнение: каменный шар, балансировавший на тонкой, как шпиль, вершине какой-то Джомолунгмы, неожиданно качнулся и покатился вниз, порождая «лавину событий».

1973 год — физик Эдвард Трион из Америки, попробовал описать процесс рождения нашей Вселенной, используя принцип неопределенности Гейзенберга, одну из основ квантовой теории. По этому принципу, чем точней мы, к примеру, измеряем энергию, тем неопределенней становится время. Итак, если энергия строго равна нулю, то время может быть сколь угодно большим. Настолько большим, что рано или поздно в квантовом вакууме, из которого и предстоит родиться Вселенной, возникнет флуктуация. Это и приведет к стремительному разрастанию космоса, казалось бы, из ничего. «Просто Вселенные иногда рождаются, вот и все», – так незатейливо Трион объяснил подоплеку Большого взрыва. Это был большой Случайный взрыв. Только и всего.

А может ли Большой взрыв повториться?

Как ни странно, да. Мы живем в мироздании, которое все еще может плодоносить и порождать новые миры. Созданы несколько моделей, которые описывают «Большие взрывы» будущего.

Почему бы, к примеру, в том же вакууме, породившем нашу Вселенную, не появиться новым флуктуациям? Может быть, за эти 13,7 миллиарда лет рядом с нашим мирозданием появилось бесчисленное множество миров, никак не соприкасающихся друг с другом. В них действуют разные законы природы, существуют различные физические константы. В большинстве этих миров жизнь никогда не могла бы возникнуть. Многие из них сразу гибнут, испытывают коллапс. Но в некоторых Вселенных – по чистой случайности! – складываются условия, при которых способна зародиться жизнь.

Но дело не только в том вакууме, что пребывает до начала «всех времен и народов». Чреватые будущими мирами флуктуации могут возникать и в вакууме, что разлит в нашей Вселенной, – точней, в темной энергии, заполняющей ее. Такого рода модель «обновляющейся Вселенной» разработал американский космолог, уроженец Советского Союза, Александр Виленкин. Нам эти новые «большие взрывы» ничем не грозят. Они не разрушат структуру Вселенной, не выжгут ее дотла, а только создадут новое пространство за пределами, доступными нашему наблюдению и пониманию. Может быть, подобные «взрывы», знаменующие рождения новых миров, происходят в глубинах многочисленных черных дыр, усеивающих космос, полагает американский астрофизик Ли Смолин.

Другой уроженец СССР, проживающий на Западе, космолог Андрей Линде считает, что мы сами способны учинить новый Большой взрыв, собрав в какой-то точке пространства громадное количество энергии, превышающее некий критический предел. По его расчетам, космические инженеры будущего могли бы взять незримую щепотку вещества – всего несколько сотых долей миллиграмма – и уплотнить его до такой степени, что энергия этого сгустка составит 1015 гигалектронвольт. Образуется крохотная черная дыра, которая начнет расширяться по экспоненте. Так возникнет «дочерняя Вселенная» со своим пространством-временем, стремительно отделяющаяся от нашей Вселенной.

…В природе Большого взрыва много фантастичного. Но справедливость этой теории доказывает целый ряд природных феноменов. К ним относятся наблюдаемое нами расширение Вселенной, картина распределения химических элементов, а также космическое фоновое излучение, которое так и называют «реликтом Большого взрыва».

Мир не существует вечно. Он зародился в пламени Большого взрыва. Однако было ли это уникальным явлением в истории космоса? Или повторяющимся событием, вроде рождения звезд и планет? Что если Большой взрыв – только фаза перехода из одного состояния Вечности в другое?

Многие из физиков говорят о том, что изначально было Нечто, а не Ничто. Возможно, наша Вселенная, – как и другие, – родилась из элементарного квантового вакуума. Но как ни «минимально просто» подобное состояние, – а меньше, чем квантовый вакуум, не позволяют быть законы физики, – его нельзя все же именовать «Ничто».

Возможно, видимая нами Вселенная – только очередное агрегатное состояние Вечности? А причудливое расположение галактик и галактических скоплений – что-то наподобие кристаллической решетки, которая в n-мерном мире, существовавшем до рождения нашей Вселенной, имела совсем иную структуру и которая возможно предсказана «формулой всего», разыскивавшейся еще Эйнштейном? И будет ли она найдена в ближайшие десятилетия? Ученые напряженно вглядываются сквозь стену Неведомого, оградившего наше мироздание, стараясь понять, что же было за мгновение до того, как, по привычным для нас представлениям, не было ровным счетом ничего. Какие формы Вечного космоса возможно вообразить, наделив время и пространство теми качествами, которые немыслимы в нашем мироздании?

Среди самых многообещающих теорий, в которые физики стараются втиснуть целую Вечность, возможно назвать теорию квантовой геометрии, квантово-спиновую динамику или квантовую гравитацию. Наибольший вклад в их разработку внесли Абэй Аштекар, Тед Джекобсон, Ежи Левандовски, Карло Ровелли, Ли Смолин и Томас Тиманн. Все это – сложнейшие физические построения, целые дворцы, возведенные из формул и гипотез, – только бы скрыть таящуюся в их глубине и темноте прорву, сингулярность времени и пространства.

Эпоха сингулярности

Окольные тропы новых теорий заставляют нас перешагнуть через очевидные, на первый взгляд, истины. Так, в квантовой геометрии пространство и время, прежде дробимые бесконечно, вдруг разбиваются на отдельные островки – порции, кванты, меньше которых нет ничего. Все сингулярные точки могут быть вмурованы в эти «каменные глыбы». Само пространство-время превращается в переплетение одномерных структур – «сети спинов», то есть становится дискретной структурой, в своем роде цепью, сплетенной из отдельных звеньев.

Объем минимально возможной петельки пространства составляет всего 10-99 кубического сантиметра. Эта величина до такой степени мала, что в одном кубическом сантиметре гораздо больше квантов пространства, чем тех самых кубических сантиметров в наблюдаемой нами Вселенной (ее объем составляет 1085 сантиметров в кубе). Внутри квантов пространства нет ничего, ни энергии, ни вещества – подобно тому, как внутри математической точки – по определению – не отыскать ни треугольника, ни икосаэдра. Но если мы применим гипотезу о «субмикроскопической ткани Вселенной», что бы описать Большой взрыв, мы получим поразительные результаты, как показали Абэй Аштекар и Мартин Боджовальд из Пенсильванского университета.

Если заменить в Стандартной теории космологии дифференциальные уравнения, предполагающие непрерывное течение пространства, другими дифференциальными уравнениями, следующими из теории квантовой геометрии, то таинственная сингулярность исчезнет. Физика не заканчивается там, где начинается Большой взрыв, – таков первый обнадеживающий вывод космологов, которые отказались принимать за истину в последней инстанции видимые нами свойства мироздания.

В теории квантовой гравитации предполагается, что наша Вселенная (как и все другие) родилась в как результат случайной флуктуации квантового вакуума – глобальной макроскопической среды, в которой не было времени. Каждый раз, когда в квантовом вакууме возникает флуктуация определенных размеров, рождается и новая Вселенная. Она «отпочковывается» от той однородной среды, в которой образовалась, и начинает свою собственную жизнь. Теперь у нее – своя история, свое пространство, свое время, своя стрела времени.

В современной физике создали ряд теорий, показывающих, как из вечно существующей среды, где нет Макровремени, но в отдельных точках которой течет свое микровремя, может возникнуть такой громадный мир, как наш.

К примеру, физики Габриэле Венециано и Маурицио Гасперини из Италии, в рамках теории струн предполагают, что изначально существовал так называемый «струнный вакуум». Случайные квантовые флуктуации в нем привели к тому, что плотность энергии достигла критической величины, и это вызвало локальный коллапс. Который завершился рождением нашей Вселенной из вакуума.

В рамках теории квантовой геометрии Абэй Аштекар и Мартин Боджовальд показали, что пространство и время могут возникать из более примитивных фундаментальных структур, а именно «сетей спинов».

Экхард Ребхан из Дюссельдорфского университета и – независимо от него – Джордж Эллис и Рой Маартенс из Кейптаунского университета развивают идею «статической Вселенной», которую обдумывали еще Альберт Эйнштейн и британский астроном Артур Эддингтон. В своем стремлении обойтись без эффектов квантовой гравитации Ребхан и его коллеги придумали сферическое пространство, пребывающее посреди вечной пустоты (или, если хотите, пустой вечности), где нет никакого времени. Ввиду некоторой нестабильности здесь развивается инфляционный процесс, что и приводит к горячему Большому взрыву.

Конечно, перечисленные модели умозрительны, но они принципиально соответствуют современному уровню развития физики и результатам астрономических наблюдений последних нескольких десятилетий. В любом случае, ясно одно. Большой взрыв был скорей рядовым, естественным событием, а не единственным в своем роде.

Помогут ли подобного рода теории понять, что же могло быть до Большого взрыва? Если Вселенная родилась, что ее породило? Где в современных теориях космологии проступает «генетический отпечаток» ее родительницы? 2005 год — Абэй Аштекар, к примеру, обнародовал результаты своих новых расчетов (проделать их помогли Томаш Павловски и Парамприт Сингх). Из них явствовало, что если исходные посылки верны, то до Большого взрыва существовали то же самое пространство-время, что и после этого события. Физика нашего мироздания, словно в зеркале, отразилась в физике мира иного. В этих расчетах Большой взрыв, словно зеркальный экран, рассекал Вечность, располагая рядом несоединимое – естество и его отражение. И что подлинность здесь, что призрак?

Единственное, что возможно разглядеть «с той стороны зеркального стекла», что Вселенная тогда не расширялась, а сжималась. Большой взрыв стал точкой ее коллапса. В этот момент пространство и время на мгновение пресеклись, чтобы снова отразиться – продолжиться – фениксом восстать уже в знакомом нам мире, том мироздании, которое мы вымеряем нашими формулами, шифрами и числами. Вселенная буквально вывернула сама себя наизнанку, будто перчатку или рубашку, и с того времени неуклонно расширяется. Большой взрыв не был, по Аштекару, «творением целой Вселенной из Ничто», а являлся только переходом из одной динамической формы Вечности в другую. Возможно, Вселенная переживает бесконечную череду «больших взрывов», и эти десятки миллиардов (или сколько там) лет, разделяющие ее отдельные фазы, – только периоды «космической синусоиды», по законам которой живет мироздание?

Даже современные ученые не могут с точностью сказать, что было во Вселенной до Большого взрыва. Существует несколько гипотез, приоткрывающих завесу тайны над одним из самых сложных вопросов мироздания.

Происхождение материального мира

До XX века существовало только две Сторонники религиозной точки зрения считали, что мир был создан богом. Ученые, наоборот, отказывались признавать рукотворность Вселенной. Физики и астрономы были сторонниками идеи о том, что космос существовал всегда, мир был статичен и все останется таким же, как миллиарды лет назад.

Однако ускорившийся научный прогресс на рубеже веков привел к тому, что у исследователей появились возможности для изучения внеземных просторов. Некоторые из них первыми попытались ответить на вопрос, что было во Вселенной до Большого взрыва.

Исследования Хаббла

XX столетие разрушило многие теории прошлых эпох. На освободившемся месте появились новые гипотезы, объяснившие доселе непонятные тайны. Все началось с того, что ученые установили факт расширения Вселенной. Сделано это было Эдвином Хабблом. Он обнаружил, что далекие галактики отличаются по своему свету от тех космических скоплений, которые находились ближе к Земле. Открытие этой закономерности легло в основу закона расширения Эдвина Хаббла.

Большой взрыв и происхождение Вселенной были изучены, когда стало ясно, что все галактики «убегают» от наблюдателя, в какой бы точке он ни был. Как это можно было объяснить? Раз галактики движутся, значит, их толкает вперед некая энергия. Кроме того, физики вычислили, что все миры когда-то находились в одной точке. Из-за некоего толчка они начали двигаться во все стороны с невообразимой скоростью.

Это явление и получило название «Большой взрыв». И происхождение Вселенной было объяснено именно с помощью теории об этом давнем событии. Когда оно случилось? Физики определили скорость движения галактик и вывели формулу, по которой они вычислили, когда произошел первоначальный «толчок». Точных цифр никто назвать не возьмется, но приблизительно это явление имело место около 15 миллиардов лет назад.

Появление теории Большого взрыва

Тот факт, что все галактики являются источниками света, означает, что при Большом взрыве выделилось огромное количество энергии. Именно она породила ту самую яркость, которую миры теряют по ходу своего отдаления от эпицентра произошедшего. Теория Большого взрыва впервые была доказана американскими астрономами Робертом Вильсоном и Арно Пензиасом. Они обнаружили электромагнитное реликтовое излучение, температура которого равнялась трем градусам по кельвиновской шкале (то есть -270 по Цельсию). Эта находка подтвердила идею о том, что сначала Вселенная была крайне горячей.

Теория Большого взрыва ответила на многие вопросы, сформулированные в XIX веке. Однако теперь появились новые. Например, что было во Вселенной до Большого взрыва? Почему она так однородна, в то время как при таком огромном выбросе энергии вещество должно разлететься во все стороны неравномерно? Открытия Вильсона и Арно поставили под сомнения классическую Евклидову геометрию, так как было доказано, что пространство имеет нулевую кривизну.

Инфляционная теория

Новые поставленные вопросы показывали, что современная теория возникновения мира отрывочна и неполна. Однако долгое время казалось, что продвинуться дальше открытого в 60-е годы будет невозможно. И только совсем недавние исследования ученых позволили сформулировать новый важный принцип для теоретической физики. Это было явление сверхбыстрого инфляционного расширения Вселенной. Оно было изучено и описано с помощью квантовой теории поля и общей теории относительности Эйнштейна.

Так что было во Вселенной до Большого взрыва? Современная наука называет этот период «инфляцией». Вначале было только поле, которое заполняло все воображаемое пространство. Его можно сравнить со снежком, пущенным вниз по склону снежной горы. Ком будет катиться вниз и увеличиваться в размерах. Точно так же поле из-за случайных колебаний на протяжении невообразимого времени меняло свою структуру.

Когда образовалась однородная конфигурация, произошла реакция. В ней и заключаются самые большие загадки Вселенной. Что было до Большого взрыва? Инфляционное поле, которое совсем не походило на нынешнюю материю. После реакции начался рост Вселенной. Если продолжить аналогию со снежным комом, то вслед за первым из них вниз покатились другие снежки, также увеличивавшиеся в размерах. Момент Большого взрыва в этой системе можно сравнить с той секундой, когда огромная глыба рухнула в пропасть и, наконец, столкнулась с землей. В это мгновение выделилось колоссальное количество энергии. Она не может иссякнуть до сих пор. Именно за счет продолжения реакции от взрыва наша Вселенная растет и сегодня.

Материя и поле

Сейчас Вселенная состоит из невообразимого количества звезд и других космических тел. Эта совокупность материи источает огромную энергию, что противоречит физическому закону сохранения энергии. О чем он гласит? Суть этого принципа сводится к тому, что на протяжении бесконечного времени сумма энергии в системе остается неизменной. Но как это может сочетаться с нашей Вселенной, которая продолжает расширяться?

Инфляционная теория смогла ответить на этот вопрос. Крайне редко разгадываются подобные загадки Вселенной. Что было до Большого взрыва? Инфляционное поле. После возникновения мира на его место пришла привычная нам материя. Однако помимо нее во Вселенной также существует которое обладает отрицательной энергией. Свойства этих двух сущностей противоположны. Так компенсируется энергия, исходящая от частиц, звезд, планет и другой материи. Эта взаимосвязь также объясняет, почему Вселенная до сих пор не превратилась в черную дыру.

Когда Большой взрыв только произошел, мир был слишком мал, чтобы в нем что-то могло коллапсировать. Теперь же, когда Вселенная расширилась, на отдельных ее участках появились локальные черные дыры. Их гравитационное поле поглощает все окружающее. Из него не может выбраться даже свет. Собственно из-за этого подобные дыры становятся черными.

Расширение Вселенной

Даже несмотря на теоретическое обоснование инфляционной теории, до сих пор непонятно, как выглядела Вселенная до Большого взрыва. Человеческое воображение не может представить себе этой картины. Дело в том, что инфляционное поле является нематериальным. Оно не поддается объяснению привычными законами физики.

Когда произошел Большой взрыв, инфляционное поле начало расширяться в темпе, который превысил скорость света. Согласно физическим показателям, во Вселенной нет ничего материального, что могло бы двигаться быстрее этого показателя. Свет распространяется по существующему миру с запредельными цифрами. Инфляционное поле же распространилось с еще большей скоростью, как раз в силу своей нематериальной природы.

Современное состояние Вселенной

Текущий период эволюции Вселенной как нельзя лучше подходит для существования жизни. Ученые затрудняются определить, сколько будет продолжаться этот временной отрезок. Но если кто и брался за такие расчеты, то получавшиеся цифры были никак не меньше сотен миллиардов лет. Для одной человеческой жизни подобный отрезок настолько велик, что даже в математическом исчислении его приходится записывать с помощью использования степеней. Настоящее изучено гораздо лучше, чем предыстория Вселенной. Что было до Большого взрыва, в любом случае останется только предметом теоретических изысканий и смелых расчетов.

В материальном мире даже время остается величиной относительной. Например, квазары (вид астрономических объектов), существующие на расстоянии 14 миллиардов световых лет от Земли, отстают от нашего привычного «сейчас» на те самые 14 миллиардов световых лет. Этот временной разрыв колоссален. Его сложно определить даже математически, не говоря уже о том, что отчетливо представить себе подобное с помощью человеческого воображения (даже самого пылкого) просто невозможно.

Современная наука может теоретически объяснить себе всю жизнь нашего материального мира, начиная с первых долей секунд его существования, когда только что произошел Большой взрыв. Полная история Вселенной дополняется до сих пор. Астрономы открывают новые удивительные факты с помощью модернизированного и улучшенного исследовательского оборудования (телескопов, лабораторий и т. д.).

Однако существуют и так и не понятые явления. Таким белым пятном, например, является и ее темная энергия. Сущность этой скрытой массы продолжает будоражить сознание самых образованных и передовых физиков современности. Кроме того, так и не возникло единой точки зрения о причинах того, почему во Вселенной частиц все-таки больше, чем античастиц. По этому поводу было сформулировано несколько фундаментальных теорий. Некоторые из этих моделей пользуются наибольшей популярностью, но ни одна из них пока не принята международным научным сообществом в качестве

В масштабе всеобщего знания и колоссальных открытий XX столетий эти пробелы кажутся совсем незначительными. Но история науки с завидной регулярностью показывает, что объяснение таких «малых» фактов и явлений становится основой для всего представления человечества о дисциплине в целом (в данном случае речь идет об астрономии). Поэтому будущим поколениям ученых, безусловно, будет чем заняться и что открывать в области познания природы Вселенной.