I. Механика. Движение по окружности

  • Основные законы Динамики. Законы Ньютона - первый, второй, третий. Принцип относительности Галилея. Закон всемирного тяготения. Сила тяжести. Силы упругости. Вес. Силы трения - покоя, скольжения, качения + трение в жидкостях и газах.
  • Кинематика. Основные понятия. Равномерное прямолинейное движение. Равноускоренное движение. Равномерное движение по окружности. Система отсчёта. Траектория, перемещение, путь, уравнение движения, скорость, ускорение, связь линейной и угловой скорости.
  • Простые механизмы. Рычаг (рычаг первого рода и рычаг второго рода). Блок (неподвижный блок и подвижный блок). Наклонная плоскость. Гидравлический пресс. Золотое правило механики
  • Законы сохранения в механике. Механическая работа, мощность, энергия, закон сохранения импульса, закон сохранения энергии, равновесие твердых тел
  • Вы сейчас здесь: Движение по окружности. Уравнение движения по окружности. Угловая скорость. Нормальное = центростремительное ускорение. Период, частота обращения (вращения). Связь линейной и угловой скорости
  • Механические колебания. Свободные и вынужденные колебания. Гармонические колебания. Упругие колебания. Математический маятник. Превращения энергии при гармонических колебаниях
  • Механические волны. Скорость и длина волны. Уравнение бегущей волны. Волновые явления (дифракция. интерференция...)
  • Гидромеханика и аэромеханика. Давление, гидростатическое давление. Закон Паскаля. Основное уравнение гидростатики. Сообщающиеся сосуды. Закон Архимеда. Условия плавания тел. Течение жидкости. Закон Бернулли. Формула Торричели
  • Молекулярная физика. Основные положения МКТ. Основные понятия и формулы. Свойства идеального газа. Основное уравнение МКТ. Температура. Уравнение состояния идеального газа. Уравнение Менделеева-Клайперона. Газовые законы - изотерма, изобара, изохора
  • Волновая оптика. Корпускулярно-волновая теория света. Волновые свойства света. Дисперсия света. Интерференция света. Принцип Гюйгенса-Френеля. Дифракция света. Поляризация света
  • Термодинамика. Внутренняя энергия. Работа. Количество теплоты. Тепловые явления. Первый закон термодинамики. Применение первого закона термодинамики к различным процессам. Уравнение теплового балланса. Второй закон термодинамики. Тепловые двигатели
  • Электростатика. Основные понятия. Электрический заряд. Закон сохранения электрического заряда. Закон Кулона. Принцип суперпозиции. Теория близкодействия. Потенциал электрического поля. Конденсатор.
  • Постоянный электрический ток. Закон Ома для участка цепи. Работа и мощность постоянного тока. Закон Джоуля-Ленца. Закон Ома для полной цепи. Закон электролиза Фарадея. Электрические цепи - последовательное и параллельное соединение. Правила Кирхгофа.
  • Электромагнитные колебания. Свободные и вынужденные электромагнитные колебания. Колебательный контур. Переменный электрический ток. Конденсатор в цепи переменного тока. Катушка индуктивности ("соленоид") в цепи переменного тока.
  • Элементы теории относительности. Постулаты теории относительности. Относительность одновременности, расстояний, промежутков времени. Релятивистский закон сложения скоростей. Зависимость массы от скорости. Основной закон релятивистский динамики...
  • Погрешности прямых и косвенных измерений. Абсолютная, относительная погрешность. Систематические и случайные погрешности. Среднее квадратическое отклонение (ошибка). Таблица определения погрешностей косвенных измерений различных функций.
  • Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назватьравномерным , оно являетсяравноускоренным .

    Угловая скорость

    Выберем на окружности точку1 . Построим радиус. За единицу времени точка переместится в пункт2 . При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

    Период и частота

    Период вращенияT - это время, за которое тело совершает один оборот.

    Частота вращение - это количество оборотов за одну секунду.

    Частота и период взаимосвязаны соотношением

    Связь с угловой скоростью

    Линейная скорость

    Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной.Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.


    Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено - это есть периодT .Путь , который преодолевает точка - это есть длина окружности.

    Центростремительное ускорение

    При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

    Используя предыдущие формулы, можно вывести следующие соотношения


    Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

    Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

    Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

    Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

    Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

    Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна

    Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А - уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

    Закон. Все движения происходят одинаково в покоящихся системах отсчета, или движущихся относительно друг друга с постоянной скоростью. Это принцип одинаковости или равнозначности инерциальных систем отсчета или принцип независимости Галилея.

    Общие законы движения

    1 Закон. Если на тело не действуют другие тела, оно сохраняет состояние покоя или равномерного прямолинейного движения. Это закон инерции, первый закон Ньютона.

    3 Закон. Все движения материального тела происходят независимо друг от друга и складываются как векторные величины. Так любое тело на земле одновременно участвует в движении Солнца с планетами вокруг Центра Галактики со скоростью около 200 км./сек, в движении Земли по орбите со скоростью около 30 км/сек, во вращении Земли вокруг своей оси со скоростью до 400 м /сек и возможно в других движениях. Получается весьма замысловатая криволинейная траектория!

    Если тело брошено с начальной скоростью Vo, под углом a к горизонту то дальность полета –S вычисляется по формуле:

    S = 2 V*SIN(a) * COS(a) / g = V*SIN(2a) / g

    Максимальная дальность при a =45 градусов. Максимальная высота полета –h вычисляется по формуле:

    h = V* SIN(a)/2g

    Обе эти формулыможно получить, если учесть, что вертикальная составляющая Vo*SIN(a), а горизонтальная Vo* COS(a), V =g*t, t =V/g.

    Cделаем подстановку в основную формулу для высоты

    h = g t/2 = g* (V/g)/2 = V/2g = V* SIN(a)/2g.

    Это и есть нужная формула. Максимальная высота при бросании вертикально вверх, при этом

    a =90 градусов, SIN(a) =1; h = V*/2g

    Для вывода формулы дальности полета нужно горизонтальную составляющую умножить на удвоенное время падения с высоты h. Если учитывать сопротивление воздуха, то путь будет короче. Для снаряда, например, почти вдвое. Одной и той же дальности будут соответствовать два разных угла бросания.



    Рис.11 Траектории полета тела брошенного под углом к горизонту. Рисунок справа движение по окружности.

    w- Угловая скорость вращающегося тела; радиан / сек

    b -Угловое положение вращающегося тела; радианы или градусы относительно оси. Радиан это угол под которым видна из центра окружности дуга равная радиусу окружности, соответственно рад=360/6,28 = 57,32 градусов

    а-угловое ускорение измеряется в рад/сек 2

    b = bо + w * t, Угловое перемещение отbо.

    S = b *R - Линейное преремещение по окружности радиусаR.

    w =(b - bо)/(t –to); - Угловая скорость. V = w* R – Скорость по окружности

    T = 2*p/w =2*p*R/V Отсюда V = 2*p*R/T

    a =ao + w/t – Угловое ускорение. Угловое ускорение определяется тагенциальной силой и при ее отсутствии будет равномерное движение тела по окружности. При этом на тело действует центростремительное ускорение, которое в течение оборота изменяет скорость в 2*p раз. Его величина определиться формулой. a =DV/T =2*p*V/2*p*R/V =V/R



    Средние величины скорости и ускорения не позволяют рассчитать положение тела при неравномерном движении. Для этого необходимо знать значения скорости и ускорения в короткие промежутки времени или мгновенные значения. Мгновенные значения определяются через производные или дифференциалы.

    Движение тела по окружности с постоянной по модулю скоростью - это движение, при котором тело за любые равные промежутки времени описывает одинаковые дуги.

    Положение тела на окружности определяется радиусом-вектором \(~\vec r\), проведенным из центра окружности. Модуль радиуса-вектора равен радиусу окружности R (рис. 1).

    За время Δt тело, двигаясь из точки А в точку В , совершает перемещение \(~\Delta \vec r\), равное хорде АВ , и проходит путь, равный длине дуги l .

    Радиус-вектор поворачивается на угол Δφ . Угол выражают в радианах.

    Скорость \(~\vec \upsilon\) движения тела по траектории (окружности) направлена по касательной к траектории. Она называется линейной скоростью . Модуль линейной скорости равен отношению длины дуги окружности l к промежутку времени Δt за который эта дуга пройдена:

    \(~\upsilon = \frac{l}{\Delta t}.\)

    Скалярная физическая величина, численно равная отношению угла поворота радиуса-вектора к промежутку времени, за который этот поворот произошел, называется угловой скоростью :

    \(~\omega = \frac{\Delta \varphi}{\Delta t}.\)

    В СИ единицей угловой скорости является радиан в секунду (рад/с).

    При равномерном движении по окружности угловая скорость и модуль линейной скорости - величины постоянные: ω = const; υ = const.

    Положение тела можно определить, если известен модуль радиуса-вектора \(~\vec r\) и угол φ , который он составляет с осью Ox (угловая координата). Если в начальный момент времени t 0 = 0 угловая координата равна φ 0 , а в момент времени t она равна φ , то угол поворота Δφ радиуса-вектора за время \(~\Delta t = t - t_0 = t\) равен \(~\Delta \varphi = \varphi - \varphi_0\). Тогда из последней формулы можно получить кинематическое уравнение движения материальной точки по окружности :

    \(~\varphi = \varphi_0 + \omega t.\)

    Оно позволяет определить положение тела в любой момент времени t . Учитывая, что \(~\Delta \varphi = \frac{l}{R}\), получаем\[~\omega = \frac{l}{R \Delta t} = \frac{\upsilon}{R} \Rightarrow\]

    \(~\upsilon = \omega R\) - формула связи между линейной и угловой скоростью.

    Промежуток времени Τ , в течение которого тело совершает один полный оборот, называется периодом вращения :

    \(~T = \frac{\Delta t}{N},\)

    где N - число оборотов, совершенных телом за время Δt .

    За время Δt = Τ тело проходит путь \(~l = 2 \pi R\). Следовательно,

    \(~\upsilon = \frac{2 \pi R}{T}; \ \omega = \frac{2 \pi}{T} .\)

    Величина ν , обратная периоду, показывающая, сколько оборотов совершает тело за единицу времени, называется частотой вращения :

    \(~\nu = \frac{1}{T} = \frac{N}{\Delta t}.\)

    Следовательно,

    \(~\upsilon = 2 \pi \nu R; \ \omega = 2 \pi \nu .\)

    Литература

    Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - C. 18-19.

    Равномерное движение по окружности – это простейший пример . Например, по окружности движется конец стрелки часов по циферблату. Скорость движения тела по окружности носит название линейная скорость .

    При равномерном движении тела по окружности модуль скорости тела с течением времени не изменяется, то есть v = const, а изменяется только направление вектора скорости в этом случае отсутствует (a r = 0), а изменение вектора скорости по направлению характеризуется величиной, которая называется центростремительное ускорение () a n или а ЦС. В каждой точке вектор центростремительного ускорения направлен к центру окружности по радиусу.

    Модуль центростремительного ускорения равен

    a ЦС =v 2 / R

    Где v – линейная скорость, R – радиус окружности

    Рис. 1.22. Движение тела по окружности.

    Когда описывается движение тела по окружности, используется угол поворота радиуса – угол φ, на который за время t поворачивается радиус, проведённый из центра окружности до точки, в которой в этот момент находится движущееся тело. Угол поворота измеряется в радианах. равен углу между двумя радиусами окружности, длина дуги между которыми равна радиусу окружности (рис. 1.23). То есть если l = R, то

    1 радиан= l / R

    Так как длина окружности равна

    l = 2πR

    360 о = 2πR / R = 2π рад.

    Следовательно

    1 рад. = 57,2958 о = 57 о 18’

    Угловая скорость равномерного движения тела по окружности – это величина ω, равная отношению угла поворота радиуса φ к промежутку времени, в течение которого совершён этот поворот:

    ω = φ / t

    Единица измерения угловой скорости – радиан в секунду [рад/с]. Модуль линейной скорости определяется отношением длины пройденного пути l к промежутку времени t:

    v= l / t

    Линейная скорость при равномерном движении по окружности направлена по касательной в данной точке окружности. При движении точки длина l дуги окружности, пройденной точкой, связана с углом поворота φ выражением

    l = Rφ

    где R – радиус окружности.

    Тогда в случае равномерного движения точки линейная и угловая скорости связаны соотношением:

    v = l / t = Rφ / t = Rω или v = Rω

    Рис. 1.23. Радиан.

    Период обращения – это промежуток времени Т, в течение которого тело (точка) совершает один оборот по окружности.Частота обращения – это величина, обратная периоду обращения – число оборотов в единицу времени (в секунду). Частота обращения обозначается буквой n.

    n = 1 / T

    За один период угол поворота φ точки равен 2π рад, поэтому 2π = ωT, откуда

    T = 2π / ω

    То есть угловая скорость равна

    ω = 2π / T = 2πn

    Центростремительное ускорение можно выразить через период Т и частоту обращения n:

    a ЦС = (4π 2 R) / T 2 = 4π 2 Rn 2