Открытие броуновского движения. Броуновское движение

Научный руководитель: Известен как: Награды и премии:

Броун - традиционный вариант русского написания фамилии учёного (правильнее - Браун) .

Биография

С новой точки зрения он рассматривал растительный мир в «General remarks on the Botany of Terra Australis » (Лондон, 1814) и в своем позднейшем сочинении о распределении растительных семейств в Австралии обнаружил всю глубину своих воззрений на природу. Позже он обнародовал ещё «Supplementum primum florae Novae Hollandiae » (Лондон, 1830), материалом для которого послужили гербарии , собранные новейшими исследователями.

Он составлял также отделы ботаники в донесениях Росса , Парри и Клаппертона , путешественников по полярным странам, помогал хирургу Ричардсону , собравшему много интересного во время путешествия с Франклином ; постепенно описал гербарии, собранные: Горсфильдом (Horsfield) на Яве в 1802-1815 годах, Оудни и Клаппертоном в Центральной Африке , Кристианом Смитом , спутником Такки - во время экспедиции по течению Конго .

Член (с 1810 года). С 1810 по 1820 год Роберт Броун заведовал Линнеевской библиотекой и обширными коллекциями своего покровителя Банкса, президента Лондонского королевского общества . В 1820 году он стал библиотекарем и хранителем ботанического отделения Британского музея , куда после смерти Банкса были переданы коллекции последнего. Благодаря этим собраниям и библиотеке и той массе растений различнейших стран, какой он всегда был окружён, Броун был лучшим знатоком растений.

Естественная система многим ему обязана: он стремился к возможно большей простоте как в классификации, так и в терминологии, избегал всяких ненужных нововведений; очень многое сделал для исправления определений старых и установления новых семейств. В своей классификации высших растений он разделил покрытосеменные и голосеменные растения.

Он работал также и в области физиологии растений : исследовал развитие пыльника и движение плазматических телец в нём. В 1827 году Броун открыл движение пыльцевых зёрен в жидкости (позднее названное его именем). Исследуя пыльцу под микроскопом , он установил, что в растительном соке плавающие пыльцевые зёрна двигаются совершенно хаотически зигзагообразно во все стороны . Броун первым определил ядро в растительной клетке и опубликовал эти сведения в 1831 году . Эти исследования помещены в 4 и 5 томах, переведённых на немецкий язык Неес фон Эзенбеком «Vermischten botan. Schriften » (5 т., Нюрнберг, 1827-1834).

Заслуги Роберта Броуна в ботанике были очевидны, и в 1849 году он стал президентом Линнеевского общества в Лондоне , где служил науке до 1853 года.

После его смерти, последовавшей 10 июня 1858 года, Беннет (Bennet) издал «The miscellaneous botanical works of Robert Brown » (3 тома, Лондон, 1866-1868).

Роберт Броун похоронен на кладбище Кенсал-Грин (англ. Kensal Green Cemetery ) в Лондоне.

См. также

Напишите отзыв о статье "Броун, Роберт"

Примечания

Литература

  • Ford B. J. Brownian movement in Clarkia pollen: a reprise of the first observations // .

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп.). - СПб. , 1890-1907. (Проверено 2 октября 2009)
  • Броун Роберт // Большая советская энциклопедия : [в 30 т.] / гл. ред. А. М. Прохоров . - 3-е изд. - М . : Советская энциклопедия, 1969-1978. (Проверено 2 октября 2009)
  • Храмов Ю. А. Броун Роберт (Brown, Robert) // Физики: Биографический справочник / Под ред. А. И. Ахиезера . - Изд. 2-е, испр. и дополн. - М .: Наука , 1983. - 400 с. - 200 000 экз. (в пер.)
  • на официальном сайте РАН

Отрывок, характеризующий Броун, Роберт

– Тит, ступай молотить, – говорил шутник.
– Тьфу, ну те к чорту, – раздавался голос, покрываемый хохотом денщиков и слуг.
«И все таки я люблю и дорожу только торжеством над всеми ими, дорожу этой таинственной силой и славой, которая вот тут надо мной носится в этом тумане!»

Ростов в эту ночь был со взводом во фланкёрской цепи, впереди отряда Багратиона. Гусары его попарно были рассыпаны в цепи; сам он ездил верхом по этой линии цепи, стараясь преодолеть сон, непреодолимо клонивший его. Назади его видно было огромное пространство неясно горевших в тумане костров нашей армии; впереди его была туманная темнота. Сколько ни вглядывался Ростов в эту туманную даль, он ничего не видел: то серелось, то как будто чернелось что то; то мелькали как будто огоньки, там, где должен быть неприятель; то ему думалось, что это только в глазах блестит у него. Глаза его закрывались, и в воображении представлялся то государь, то Денисов, то московские воспоминания, и он опять поспешно открывал глаза и близко перед собой он видел голову и уши лошади, на которой он сидел, иногда черные фигуры гусар, когда он в шести шагах наезжал на них, а вдали всё ту же туманную темноту. «Отчего же? очень может быть, – думал Ростов, – что государь, встретив меня, даст поручение, как и всякому офицеру: скажет: „Поезжай, узнай, что там“. Много рассказывали же, как совершенно случайно он узнал так какого то офицера и приблизил к себе. Что, ежели бы он приблизил меня к себе! О, как бы я охранял его, как бы я говорил ему всю правду, как бы я изобличал его обманщиков», и Ростов, для того чтобы живо представить себе свою любовь и преданность государю, представлял себе врага или обманщика немца, которого он с наслаждением не только убивал, но по щекам бил в глазах государя. Вдруг дальний крик разбудил Ростова. Он вздрогнул и открыл глаза.
«Где я? Да, в цепи: лозунг и пароль – дышло, Ольмюц. Экая досада, что эскадрон наш завтра будет в резервах… – подумал он. – Попрошусь в дело. Это, может быть, единственный случай увидеть государя. Да, теперь недолго до смены. Объеду еще раз и, как вернусь, пойду к генералу и попрошу его». Он поправился на седле и тронул лошадь, чтобы еще раз объехать своих гусар. Ему показалось, что было светлей. В левой стороне виднелся пологий освещенный скат и противоположный, черный бугор, казавшийся крутым, как стена. На бугре этом было белое пятно, которого никак не мог понять Ростов: поляна ли это в лесу, освещенная месяцем, или оставшийся снег, или белые дома? Ему показалось даже, что по этому белому пятну зашевелилось что то. «Должно быть, снег – это пятно; пятно – une tache», думал Ростов. «Вот тебе и не таш…»
«Наташа, сестра, черные глаза. На… ташка (Вот удивится, когда я ей скажу, как я увидал государя!) Наташку… ташку возьми…» – «Поправей то, ваше благородие, а то тут кусты», сказал голос гусара, мимо которого, засыпая, проезжал Ростов. Ростов поднял голову, которая опустилась уже до гривы лошади, и остановился подле гусара. Молодой детский сон непреодолимо клонил его. «Да, бишь, что я думал? – не забыть. Как с государем говорить буду? Нет, не то – это завтра. Да, да! На ташку, наступить… тупить нас – кого? Гусаров. А гусары в усы… По Тверской ехал этот гусар с усами, еще я подумал о нем, против самого Гурьева дома… Старик Гурьев… Эх, славный малый Денисов! Да, всё это пустяки. Главное теперь – государь тут. Как он на меня смотрел, и хотелось ему что то сказать, да он не смел… Нет, это я не смел. Да это пустяки, а главное – не забывать, что я нужное то думал, да. На – ташку, нас – тупить, да, да, да. Это хорошо». – И он опять упал головой на шею лошади. Вдруг ему показалось, что в него стреляют. «Что? Что? Что!… Руби! Что?…» заговорил, очнувшись, Ростов. В то мгновение, как он открыл глаза, Ростов услыхал перед собою там, где был неприятель, протяжные крики тысячи голосов. Лошади его и гусара, стоявшего подле него, насторожили уши на эти крики. На том месте, с которого слышались крики, зажегся и потух один огонек, потом другой, и по всей линии французских войск на горе зажглись огни, и крики всё более и более усиливались. Ростов слышал звуки французских слов, но не мог их разобрать. Слишком много гудело голосов. Только слышно было: аааа! и рррр!
– Что это? Ты как думаешь? – обратился Ростов к гусару, стоявшему подле него. – Ведь это у неприятеля?
Гусар ничего не ответил.
– Что ж, ты разве не слышишь? – довольно долго подождав ответа, опять спросил Ростов.
– А кто ё знает, ваше благородие, – неохотно отвечал гусар.
– По месту должно быть неприятель? – опять повторил Ростов.
– Може он, а може, и так, – проговорил гусар, – дело ночное. Ну! шали! – крикнул он на свою лошадь, шевелившуюся под ним.
Лошадь Ростова тоже торопилась, била ногой по мерзлой земле, прислушиваясь к звукам и приглядываясь к огням. Крики голосов всё усиливались и усиливались и слились в общий гул, который могла произвести только несколько тысячная армия. Огни больше и больше распространялись, вероятно, по линии французского лагеря. Ростову уже не хотелось спать. Веселые, торжествующие крики в неприятельской армии возбудительно действовали на него: Vive l"empereur, l"empereur! [Да здравствует император, император!] уже ясно слышалось теперь Ростову.
– А недалеко, – должно быть, за ручьем? – сказал он стоявшему подле него гусару.
Гусар только вздохнул, ничего не отвечая, и прокашлялся сердито. По линии гусар послышался топот ехавшего рысью конного, и из ночного тумана вдруг выросла, представляясь громадным слоном, фигура гусарского унтер офицера.
– Ваше благородие, генералы! – сказал унтер офицер, подъезжая к Ростову.
Ростов, продолжая оглядываться на огни и крики, поехал с унтер офицером навстречу нескольким верховым, ехавшим по линии. Один был на белой лошади. Князь Багратион с князем Долгоруковым и адъютантами выехали посмотреть на странное явление огней и криков в неприятельской армии. Ростов, подъехав к Багратиону, рапортовал ему и присоединился к адъютантам, прислушиваясь к тому, что говорили генералы.
– Поверьте, – говорил князь Долгоруков, обращаясь к Багратиону, – что это больше ничего как хитрость: он отступил и в арьергарде велел зажечь огни и шуметь, чтобы обмануть нас.
– Едва ли, – сказал Багратион, – с вечера я их видел на том бугре; коли ушли, так и оттуда снялись. Г. офицер, – обратился князь Багратион к Ростову, – стоят там еще его фланкёры?
– С вечера стояли, а теперь не могу знать, ваше сиятельство. Прикажите, я съезжу с гусарами, – сказал Ростов.
Багратион остановился и, не отвечая, в тумане старался разглядеть лицо Ростова.
– А что ж, посмотрите, – сказал он, помолчав немного.
– Слушаю с.
Ростов дал шпоры лошади, окликнул унтер офицера Федченку и еще двух гусар, приказал им ехать за собою и рысью поехал под гору по направлению к продолжавшимся крикам. Ростову и жутко и весело было ехать одному с тремя гусарами туда, в эту таинственную и опасную туманную даль, где никто не был прежде его. Багратион закричал ему с горы, чтобы он не ездил дальше ручья, но Ростов сделал вид, как будто не слыхал его слов, и, не останавливаясь, ехал дальше и дальше, беспрестанно обманываясь, принимая кусты за деревья и рытвины за людей и беспрестанно объясняя свои обманы. Спустившись рысью под гору, он уже не видал ни наших, ни неприятельских огней, но громче, яснее слышал крики французов. В лощине он увидал перед собой что то вроде реки, но когда он доехал до нее, он узнал проезженную дорогу. Выехав на дорогу, он придержал лошадь в нерешительности: ехать по ней, или пересечь ее и ехать по черному полю в гору. Ехать по светлевшей в тумане дороге было безопаснее, потому что скорее можно было рассмотреть людей. «Пошел за мной», проговорил он, пересек дорогу и стал подниматься галопом на гору, к тому месту, где с вечера стоял французский пикет.


Роберт Броун, известный британский ботаник, родился 21 декабря 1773 году в шотландском городе Монтрозе, учился в Абердине, в Эдинбургском университете в годах изучал медицину и ботанику. Анна Смелова


Благодаря усердным занятиям естественными науками и дружбой с ботаником Джозефом Банксом, он был назначен ботаником в экспедиции, отправленной в 1801 году на исследования берегов Австралии. В 1805 году Броун возвратился в Англию, привезя с собой около видов австралийских растений, множество птиц и минералов и впоследствии издал свои сочинения относительно растительного мира. Анна Смелова


Член Лондонского королевского общества (с 1810 года). С 1810 по 1820 год Роберт Броун заведовал Линнеевской библиотекой. В 1820 году он стал библиотекарем и хранителем ботанического отделения Британского музея, куда после смерти Банкса были переданы коллекции последнего. Благодаря этим собраниям и библиотеке и той массе растений различнейших стран, какой он всегда был окружён, Броун был лучшим знатоком растений. Анна Смелова






Это явление, открытое Р. Броуном в 1827 г. при проведении исследования пыльцы растений, представляет собой беспорядочное движение микроскопических частиц (броуновские частицы) твёрдого вещества (пылинки, частички пыльцы растения и т. д.), вызываемое тепловым движением частиц жидкости (или газа). Броуновское движение является следствием и свидетельством существования теплового движения. Анна Смелова


Как - то он разглядывал под микроскопом выделенные из клеток пыльцы североамериканского растения, взвешенные в воде удлиненные цитоплазматические зерна. Неожиданно Броун увидел, что мельчайшие твердые крупинки, которые едва можно было разглядеть в капле воды, непрерывно дрожат и передвигаются с места на место. Он установил, что эти движения, по его словам, « не связаны ни с потоками в жидкости, ни с ее постепенным испарением, а присущи самим частичкам ». Анна Смелова
Броун первым определил ядро в растительной клетке и опубликовал эти сведения в 1831 году. Он дал ему название «Nucleus», или «Areola». Первый термин стал общепринятым и сохранился по настоящее время, второй же распространения не получил и забыт. Весьма важно, что Броун настаивал на постоянном наличии ядра во всех живых клетках. Анна Смелова



Шотландский ботаник Роберт Броун (иногда его фамилию транскрибируют как Браун) еще при жизни как лучший знаток растений получил титул «князя ботаников». Он сделал много замечательных открытий. В 1805 после четырехлетней экспедиции в Австралию привез в Англию около 4000 видов не известных ученым австралийских растений и много лет потратил на их изучение. Описал растения, привезенные из Индонезии и Центральной Африки. Изучал физиологию растений, впервые подробно описал ядро растительной клетки. Петербургская Академия наук сделала его своим почетным членом. Но имя ученого сейчас широко известно вовсе не из-за этих работ.

В 1827 Броун проводил исследования пыльцы растений. Он, в частности, интересовался, как пыльца участвует в процессе оплодотворения. Как-то он разглядывал под микроскопом выделенные из клеток пыльцы североамериканского растения Clarkia pulchella (кларкии хорошенькой) взвешенные в воде удлиненные цитоплазматические зерна. Неожиданно Броун увидел, что мельчайшие твердые крупинки, которые едва можно было разглядеть в капле воды, непрерывно дрожат и передвигаются с места на место. Он установил, что эти движения, по его словам, «не связаны ни с потоками в жидкости, ни с ее постепенным испарением, а присущи самим частичкам».

Наблюдение Броуна подтвердили другие ученые. Мельчайшие частички вели себя, как живые, причем «танец» частиц ускорялся с повышением температуры и с уменьшением размера частиц и явно замедлялся при замене воды более вязкой средой. Это удивительное явление никогда не прекращалось: его можно было наблюдать сколь угодно долго. Поначалу Броун подумал даже, что в поле микроскопа действительно попали живые существа, тем более что пыльца – это мужские половые клетки растений, однако так же вели частички из мертвых растений, даже из засушенных за сто лет до этого в гербариях. Тогда Броун подумал, не есть ли это «элементарные молекулы живых существ», о которых говорил знаменитый французский естествоиспытатель Жорж Бюффон (1707–1788), автор 36-томной Естественной истории . Это предположение отпало, когда Броун начал исследовать явно неживые объекты; сначала это были очень мелкие частички угля, а также сажи и пыли лондонского воздуха, затем тонко растертые неорганические вещества: стекло, множество различных минералов. «Активные молекулы» оказались повсюду: «В каждом минерале, – писал Броун, – который мне удавалось измельчить в пыль до такой степени, чтобы она могла в течение какого-то времени быть взвешенной в воде, я находил, в больших или меньших количествах, эти молекулы».

Надо сказать, что у Броуна не было каких-то новейших микроскопов. В своей статье он специально подчеркивает, что у него были обычные двояковыпуклые линзы, которыми он пользовался в течение нескольких лет. И далее пишет: «В ходе всего исследования я продолжал использовать те же линзы, с которыми начал работу, чтобы придать больше убедительности моим утверждениям и чтобы сделать их как можно более доступными для обычных наблюдений».

Сейчас чтобы повторить наблюдение Броуна достаточно иметь не очень сильный микроскоп и рассмотреть с его помощью дым в зачерненной коробочке, освещенный через боковое отверстие лучом интенсивного света. В газе явление проявляется значительно ярче, чем в жидкости: видны рассеивающие свет маленькие клочки пепла или сажи (в зависимости от источника дыма), которые непрерывно скачут туда и сюда.

Как это часто бывает в науке, спустя многие годы историки обнаружили, что еще в 1670 изобретатель микроскопа голландец Антони Левенгук , видимо, наблюдал аналогичное явление, но редкость и несовершенство микроскопов, зачаточное состояние молекулярного учения в то время не привлекли внимания к наблюдению Левенгука, поэтому открытие справедливо приписывают Броуну, который впервые подробно его изучил и описал.

Броуновское движение и атомно-молекулярная теория.

Наблюдавшееся Броуном явление быстро стало широко известным. Он сам показывал свои опыты многочисленным коллегам (Броун перечисляет два десятка имен). Но объяснить это загадочное явление, которое назвали «броуновским движением», не смог ни сам Броун, ни многие другие ученые в течение многих лет. Перемещения частиц были совершенно беспорядочны: зарисовки их положения, сделанные в разные моменты времени (например, каждую минуту) не давали на первый взгляд никакой возможности найти в этих движениях какую-либо закономерность.

Объяснение броуновского движения (как назвали это явление) движением невидимых молекул было дано только в последней четверти 19 в., но далеко не сразу было принято всеми учеными. В 1863 преподаватель начертательной геометрии из Карлсруэ (Германия) Людвиг Кристиан Винер (1826–1896) предположил, что явление связано с колебательными движениями невидимых атомов. Это было первое, хотя и очень далекое от современного, объяснение броуновского движения свойствами самих атомов и молекул. Важно, что Винер увидел возможность с помощью этого явления проникнуть в тайны строения материи. Он впервые попытался измерить скорость перемещения броуновских частиц и ее зависимость от их размера. Любопытно, что в 1921 в Докладах Национальной Академии наук США была опубликована работа о броуновском движении другого Винера – Норберта, знаменитого основателя кибернетики.

Идеи Л.К.Винера были приняты и развиты рядом ученых – Зигмундом Экснером в Австрии (а спустя 33 года – и его сыном Феликсом), Джованни Кантони в Италии, Карлом Вильгельмом Негели в Германии, Луи Жоржем Гуи во Франции, тремя бельгийскими священниками-иезуитами Карбонелли, Дельсо и Тирьоном и другими. В числе этих ученых был и знаменитый впоследствии английский физик и химик Уильям Рамзай. Постепенно становилось понятным, что мельчайшие крупинки вещества испытывают со всех сторон удары еще более мелких частиц, которые в микроскоп уже не видны – как не видны с берега волны, качающие далекую лодку, тогда как движения самой лодки видны вполне отчетливо. Как писали в одной из статей 1877, «...закон больших чисел не сводит теперь эффект соударений к среднему равномерному давлению, их равнодействующая уже не будет равна нулю, а будет непрерывно изменять свое направление и свою величину».

Качественно картина была вполне правдоподобной и даже наглядной. Примерно так же должны перемещаться маленькая веточка или жучок, которых толкают (или тянут) в разные стороны множество муравьев. Эти более мелкие частицы на самом деле были в лексиконе ученых, только их никто никогда не видел. Называли их молекулами; в переводе с латинского это слово и означает «маленькая масса». Поразительно, но именно такое объяснение дал похожему явлению римский философ Тит Лукреций Кар (ок. 99–55 до н.э.) в своей знаменитой поэме О природе вещей . В ней мельчайшие невидимые глазом частицы он называет «первоначалами» вещей.

Первоначала вещей сначала движутся сами,
Следом за ними тела из мельчайшего их сочетанья,
Близкие, как бы сказать, по силам к началам первичным,
Скрыто от них получая толчки, начинают стремиться,
Сами к движенью затем побуждая тела покрупнее.
Так, исходя от начал, движение мало-помалу
Наших касается чувств, и становится видимым также
Нам и в пылинках оно, что движутся в солнечном свете,
Хоть незаметны толчки, от которых оно происходит...

Впоследствии оказалось, что Лукреций ошибался: невооруженным глазом наблюдать броуновское движение невозможно, а пылинки в солнечном луче, который проник в темную комнату, «пляшут» из-за вихревых движений воздуха. Но внешне оба явления имеют некоторое сходство. И только в 19 в. многим ученым стало очевидно, что движение броуновских частиц вызвано беспорядочными ударами молекул среды. Движущиеся молекулы наталкиваются на пылинки и другие твердые частицы, которые есть в воде. Чем выше температура, тем быстрее движение. Если пылинка велика, например, имеет размер 0,1 мм (диаметр в миллион раз больше, чем у молекулы воды), то множество одновременных ударов по ней со всех сторон взаимно уравновешиваются и она их практически не «чувствует» – примерно так же, как кусок дерева размером с тарелку не «почувствует» усилий множества муравьев, которые будут тянуть или толкать его в разные стороны. Если же пылинка сравнительно невелика, она под действием ударов окружающих молекул будет двигаться то в одну, то в другую сторону.

Броуновские частицы имеют размер порядка 0,1–1 мкм, т.е. от одной тысячной до одной десятитысячной доли миллиметра, потому-то Броуну и удалось разглядеть их перемещение, что он рассматривал крошечные цитоплазматические зернышки, а не саму пыльцу (о чем часто ошибочно пишут). Дело в том, что клетки пыльцы слишком большие. Так, у пыльцы луговых трав, которая переносится ветром и вызывает аллергические заболевания у людей (поллиноз), размер клеток обычно находится в пределах 20 – 50 мкм, т.е. они слишком велики для наблюдения броуновского движения. Важно отметить также, что отдельные передвижения броуновской частицы происходят очень часто и на очень малые расстояния, так что увидеть их невозможно, а под микроскопом видны перемещения, происшедшие за какой-то промежуток времени.

Казалось бы, сам факт существования броуновского движения однозначно доказывал молекулярное строение материи, однако даже в начале 20 в. были ученые, и в их числе – физики и химики, которые не верили в существование молекул. Атомно-молекулярная теория лишь медленно и с трудом завоевывала признание. Так, крупнейший французский химик-органик Марселен Бертло (1827–1907) писал: «Понятие молекулы, с точки зрения наших знаний, неопределенно, в то время как другое понятие – атом – чисто гипотетическое». Еще определеннее высказался известный французский химик А.Сент-Клер Девилль (1818–1881): «Я не допускаю ни закона Авогадро , ни атома, ни молекулы, ибо я отказываюсь верить в то, что не могу ни видеть, ни наблюдать». А немецкий физикохимик Вильгельм Оствальд (1853–1932), лауреат Нобелевской премии, один из основателей физической химии, еще в начале 20 в. решительно отрицал существование атомов. Он ухитрился написать трехтомный учебник химии, в котором слово «атом» ни разу даже не упоминается. Выступая 19 апреля 1904 с большим докладом в Королевском Институте перед членами английского Химического общества, Оствальд пытался доказать, что атомов не существует, а «то, что мы называем материей, является лишь совокупностью энергий, собранной воедино в данном месте».

Но даже те физики, которые принимали молекулярную теорию, не могли поверить, что таким простым способом доказывается справедливость атомно-молекулярного учения, поэтому выдвигались самые разнообразные альтернативные причины, чтобы объяснить явление. И это вполне в духе науки: пока причина какого-либо явления не выявлена однозначно, можно (и даже необходимо) предполагать различные гипотезы, которые следует по возможности проверять экспериментально или теоретически. Так, еще в 1905 в Энциклопедическом словаре Брокгауза и Ефрона была опубликована небольшая статья петербургского профессора физики Н.А.Гезехуса, учителя знаменитого академика А.Ф.Иоффе . Гезехус писал, что, по мнению некоторых ученых, броуновское движение вызывается «проходящими через жидкость световыми или тепловыми лучами», сводится к «простым потокам внутри жидкости, не имеющим ничего общего с движениями молекул», причем эти потоки могут вызываться «испарением, диффузией и другими причинами». Ведь уже было известно, что очень похожее движение пылинок в воздухе вызывается именно вихревыми потоками. Но объяснение, приведенное Гезехусом, легко можно было опровергнуть экспериментально: если в сильный микроскоп разглядывать две броуновские частички, находящиеся очень близко друг к другу, то их перемещения окажутся совершенно независимыми. Если бы эти движения вызывались какими-либо потоками в жидкости, то такие соседние частицы двигались бы согласованно.

Теория броуновского движения.

В начале 20 в. большинство ученых понимали молекулярную природу броуновского движения. Но все объяснения оставались чисто качественными, никакая количественная теория не выдерживала экспериментальной проверки. Кроме того, сами экспериментальные результаты были неотчетливы: фантастическое зрелище безостановочно мечущихся частиц гипнотизировало экспериментаторов, и какие именно характеристики явления нужно измерять, они не знали.

Несмотря на кажущийся полный беспорядок, случайные перемещения броуновских частиц оказалось все же возможным описать математической зависимостью. Впервые строгое объяснение броуновского движения дал в 1904 польский физик Мариан Смолуховский (1872–1917), который в те годы работал в Львовском университете. Одновременно теорию этого явления разрабатывал Альберт Эйнштейн (1879–1955), мало кому известный тогда эксперт 2-го класса в Патентном бюро швейцарского города Берна. Его статья, опубликованная в мае 1905 в немецком журнале Annalen der Physik, называлась О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно-кинетической теорией теплоты . Этим названием Эйнштейн хотел показать, что из молекулярно-кинетической теории строения материи с необходимостью вытекает существование случайного движения мельчайших твердых частиц в жидкостях.

Любопытно, что в самом начале этой статьи Эйнштейн пишет, что знаком с самим явлением, хотя и поверхностно: «Возможно, что рассматриваемые движения тождественны с так называемым броуновским молекулярным движением, однако доступные мне данные относительно последнего столь неточны, что я не мог составить об этом определенного мнения». А спустя десятки лет, уже на склоне жизни, Эйнштейн написал в свои воспоминаниях нечто иное – что вообще не знал о броуновском движении и фактически заново «открыл» его чисто теоретически: «Не зная, что наблюдения над „броуновским движением" давно известны, я открыл, что атомистическая теория приводит к существованию доступного наблюдению движения микроскопических взвешенных частиц». Как бы то ни было, а заканчивалась теоретическая статья Эйнштейна прямым призывом к экспериментаторам проверить его выводы на опыте: «Если бы какому-либо исследователю удалось вскоре ответить на поднятые здесь вопросы!» – таким необычным восклицанием заканчивает он свою статью.

Ответ на страстный призыв Эйнштейна не заставил себя долго ждать.

В соответствии с теорией Смолуховского-Эйнштейна, среднее значение квадрата смещения броуновской частицы (s 2) за время t прямо пропорционально температуре Т и обратно пропорционально вязкости жидкости h , размеру частицы r и постоянной Авогадро

N A: s 2 = 2RTt /6ph rN A ,

где R – газовая постоянная. Так, если за 1 мин частица диаметром 1 мкм сместится на 10 мкм, то за 9 мин – на 10 = 30 мкм, за 25 мин – на 10 = 50 мкм и т.д. В аналогичных условиях частица диаметром 0,25 мкм за те же отрезки времени (1, 9 и 25 мин) сместится соответственно на 20, 60 и 100 мкм, так как = 2. Важно, что в приведенную формулу входит постоянная Авогадро, которую таким образом, можно определить путем количественных измерений перемещения броуновской частицы, что и сделал французский физик Жан Батист Перрен (1870–1942).

В 1908 Перрен начал количественные наблюдения за движением броуновских частиц под микроскопом. Он использовал изобретенный в 1902 ультрамикроскоп, который позволял обнаруживать мельчайшие частицы благодаря рассеянию на них света от мощного бокового осветителя. Крошечные шарики почти сферической формы и примерно одинакового размера Перрен получал из гуммигута – сгущенного сока некоторых тропических деревьев (он используется и как желтая акварельная краска). Эти крошечные шарики были взвешены в глицерине, содержащем 12% воды; вязкая жидкость препятствовала появлению в ней внутренних потоков, которые смазали бы картину. Вооружившись секундомером, Перрен отмечал и потом зарисовывал (конечно, в сильно увеличенном масштабе) на разграфленном листе бумаги положение частиц через равные интервалы, например, через каждые полминуты. Соединяя полученные точки прямыми, он получал замысловатые траектории, некоторые из них приведены на рисунке (они взяты из книги Перрена Атомы , опубликованной в 1920 в Париже). Такое хаотичное, беспорядочное движение частиц приводит к тому, что перемещаются они в пространстве довольно медленно: сумма отрезков намного больше смещения частицы от первой точки до последней.

Последовательные положения через каждые 30 секунд трех броуновских частиц – шариков гуммигута размером около 1 мкм. Одна клетка соответствует расстоянию 3 мкм. Если бы Перрен смог определять положение броуновских частиц не через 30, а через 3 секунды, то прямые между каждыми соседними точками превратились бы в такую же сложную зигзагообразную ломаную линию, только меньшего масштаба.

Используя теоретическую формулу и свои результаты, Перрен получил достаточно точное для того времени значение числа Авогадро: 6,8 . 10 23 . Перрен исследовал также с помощью микроскопа распределение броуновских частиц по вертикали (см . АВОГАДРО ЗАКОН) и показал, что, несмотря на действие земного притяжения, они остаются в растворе во взвешенном состоянии. Перрену принадлежат и другие важные работы. В 1895 он доказал, что катодные лучи – это отрицательные электрические заряды (электроны), в 1901 впервые предложил планетарную модель атома. В 1926 он был удостоен Нобелевской премии по физике.

Результаты, полученные Перреном, подтвердили теоретические выводы Эйнштейна. Это произвело сильное впечатление. Как написал через много лет американский физик А.Пайс, «не перестаешь удивляться этому результату, полученному таким простым способом: достаточно приготовить взвесь шариков, размер которых велик по сравнению с размером простых молекул, взять секундомер и микроскоп, и можно определить постоянную Авогадро!» Можно удивляться и другому: до сих пор в научных журналах (Nature, Science, Journal of Chemical Education) время от времени появляются описания новых экспериментов по броуновскому движению! После публикации результатов Перрена бывший противник атомизма Оствальд признался, что «совпадение броуновского движения с требованиями кинетической гипотезы... дает теперь право самому осторожному ученому говорить об экспериментальном доказательстве атомистической теории материи. Таким образом, атомистическая теория возведена в ранг научной, прочно обоснованной теории». Ему вторит французский математик и физик Анри Пуанкаре : «Блестящее определение числа атомов Перреном завершило триумф атомизма... Атом химиков стал теперь реальностью».

Броуновское движение и диффузия.

Перемещение броуновских частиц внешне весьма напоминает перемещение отдельных молекул в результате их теплового движения. Такое перемещение называется диффузией. Еще до работ Смолуховского и Эйнштейна были установлены законы движения молекул в наиболее простом случае газообразного состояния вещества. Оказалось, что молекулы в газах движутся очень быстро – со скоростью пули, но далеко «улететь» не могут, так как очень часто сталкиваются с другими молекулами. Например, молекулы кислорода и азота в воздухе, двигаясь в среднем со скоростью примерно 500 м/с, испытывают каждую секунду более миллиарда столкновений. Поэтому путь молекулы, если бы могли за ним проследить, представлял бы собой сложную ломаную линию. Подобную же траекторию описывают и броуновские частицы, если фиксировать их положение через определенные промежутки времени. И диффузия, и броуновское движение являются следствием хаотичного теплового движения молекул и потому описываются сходными математическими зависимостями. Различие состоит в том, что молекулы в газах движутся по прямой, пока не столкнутся с другими молекулами, после чего меняют направление движения. Броуновская же частица никаких «свободных полетов», в отличие от молекулы, не совершает, а испытывает очень частые мелкие и нерегулярные «дрожания», в результате которых она хаотически смещается то в одну, то в другую сторону. Как показали расчеты, для частицы размером 0,1 мкм одно перемещение происходит за три миллиардные доли секунды на расстояние всего 0,5 нм (1 нм = 0,001 мкм). По меткому выражению одного автора, это напоминает перемещения пустой банки из-под пива на площади, где собралась толпа людей.

Диффузию наблюдать намного проще, чем броуновское движение, поскольку для этого не нужен микроскоп: наблюдаются перемещения не отдельных частиц, а огромной их массы, нужно только обеспечить, чтобы на диффузию не накладывалось конвекция – перемешивание вещества в результате вихревых потоков (такие потоки легко заметить, капнув каплю окрашенного раствора, например, чернил, в стакан с горячей водой).

Диффузию удобно наблюдать в густых гелях. Такой гель можно приготовить, например, в баночке из-под пенициллина, приготовив в ней 4–5%-ный раствор желатина. Желатин сначала должен несколько часов набухать, а затем его полностью растворяют при перемешивании, опустив баночку в горячую воду. После охлаждения получается нетекучий гель в виде прозрачной слегка мутноватой массы. Если с помощью острого пинцета осторожно ввести в центр этой массы небольшой кристаллик перманганата калия («марганцовки»), то кристаллик останется висеть в том месте, где его оставили, так как гель не дает ему упасть. Уже через несколько минут вокруг кристаллика начнет расти окрашенный в фиолетовый цвет шарик, со временем он становится все больше и больше, пока стенки баночки не исказят его форму. Такой же результат можно получить и с помощью кристаллика медного купороса, только в этом случае шарик получится не фиолетовым, а голубым.

Почему получился шарик, понятно: ионы MnO 4 – , образующиеся при растворении кристалла, переходят в раствор (гель – это, в основном, вода) и в результате диффузии равномерно движутся во все стороны, при этом сила тяжести практически не влияет на скорость диффузии. Диффузия в жидкости идет очень медленно: чтобы шарик вырос на несколько сантиметров, потребуется много часов. В газах диффузия идет намного быстрее, но всё равно если бы воздух не перемешивался, то запах духов или нашатырного спирта распространялся в комнате часами.

Теория броуновского движения: случайные блуждания.

Теория Смолуховского – Эйнштейна объясняет закономерности и диффузии, и броуновского движения. Можно рассматривать эти закономерности на примере диффузии. Если скорость молекулы равна u , то, двигаясь по прямой, она за время t пройдет расстояние L = ut , но из-за столкновений с другими молекулами данная молекула не движется по прямой, а непрерывно изменяет направление своего движения. Если бы можно было зарисовать путь молекулы, он принципиально ничем бы не отличался от рисунков, полученных Перреном. Из таких рисунков видно, что из-за хаотичного движения молекула смещается на расстояние s , значительно меньшее, чем L . Эти величины связаны соотношением s = , где l – расстояние, которое молекула пролетает от одного столкновения до другого, средняя длина свободного пробега. Измерения показали, что для молекул воздуха при нормальном атмосферном давлении l ~ 0,1 мкм, значит, при скорости 500 м/с молекула азота или кислорода пролетит за 10 000 секунд (меньше трех часов) расстояние L = 5000 км, а сместится от первоначального положения всего лишь на s = 0,7 м (70 см), поэтому вещества за счет диффузии передвигаются так медленно даже в газах.

Путь молекулы в результате диффузии (или путь броуновской частицы) называется случайным блужданием (по-английски random walk). Остряки-физики переиначили это выражение в drunkard"s walk – «путь пьяницы». Действительно, перемещение частицы от одного положения до другого (или путь молекулы, претерпевающей множество столкновений) напоминает движение нетрезвого человека. Более того, эта аналогия позволяет также довольно просто вывести основное уравнение такого процесса – на примере одномерного движения, которое легко обобщить на трехмерное. Делают это так.

Пусть подвыпивший матрос вышел поздно вечером из кабачка и направился вдоль улицы. Пройдя путь l до ближайшего фонаря, он отдохнул и пошел... либо дальше, до следующего фонаря, либо назад, к кабачку – ведь он не помнит, откуда пришел. Спрашивается, уйдет он когда-нибудь от кабачка, или так и будет бродить около него, то отдаляясь, то приближаясь к нему? (В другом варианте задачи говорится, что на обоих концах улицы, где кончаются фонари, находятся грязные канавы, и спрашивается, удастся ли матросу не свалиться в одну из них). Интуитивно кажется, что правилен второй ответ. Но он неверен: оказывается, матрос будет постепенно все более удаляться от нулевой точки, хотя и намного медленнее, чем если бы он шел только в одну сторону. Вот как это можно доказать.

Пройдя первый раз до ближайшего фонаря (вправо или влево), матрос окажется на расстоянии s 1 = ± l от исходной точки. Так как нас интересует только его удаление от этой точки, но не направление, избавимся от знаков, возведя это выражение в квадрат: s 1 2 = l 2. Спустя какое-то время, матрос, совершив уже N «блужданий», окажется на расстоянии

s N = от начала. А пройдя еще раз (в одну из сторон) до ближайшего фонаря, – на расстоянии s N +1 = s N ± l , или, используя квадрат смещения, s 2 N +1 = s 2 N ± 2s N l + l 2. Если матрос много раз повторит это перемещение (от N до N + 1), то в результате усреднения (он с равной вероятностью проходит N -ый шаг вправо или влево), член ± 2s N l сократится, так что s 2 N +1 = s 2 N + l 2> (угловыми скобками обозначено усредненная величина).L = 3600 м = 3,6 км, тогда как смещение от нулевой точки за то же время будет равно всего s = = 190 м. За три часа он пройдет L = 10,8 км, а сместится на s = 330 м и т.д.

Произведение u l в полученной формуле можно сопоставить с коэффициентом диффузии, который, как показал ирландский физик и математик Джордж Габриел Стокс (1819–1903), зависит от размера частицы и вязкости среды. На основании подобных соображений Эйнштейн и вывел свое уравнение.

Теория броуновского движения в реальной жизни.

Теория случайных блужданий имеет важное практическое приложение. Говорят, что в отсутствие ориентиров (солнце, звезды, шум шоссе или железной дороги и т.п.) человек бродит в лесу, по полю в буране или в густом тумане кругами, все время возвращаясь на прежнее место. На самом деле он ходит не кругами, а примерно так, как движутся молекулы или броуновские частицы. На прежнее место он вернуться может, но только случайно. А вот свой путь он пересекает много раз. Рассказывают также, что замерзших в пургу людей находили «в каком-нибудь километре» от ближайшего жилья или дороги, однако на самом деле у человека не было никаких шансов пройти этот километр, и вот почему.

Чтобы рассчитать, насколько сместится человек в результате случайных блужданий, надо знать величину l , т.е. расстояние, которое человек может пройти по прямой, не имея никаких ориентиров. Эту величину с помощью студентов-добровольцев измерил доктор геолого-минералогических наук Б.С.Горобец. Он, конечно, не оставлял их в дремучем лесу или на заснеженном поле, все было проще – студента ставили в центре пустого стадиона, завязывали ему глаза и просили в полной тишине (чтобы исключить ориентирование по звукам) пройти до конца футбольного поля. Оказалось, что в среднем студент проходил по прямой всего лишь около 20 метров (отклонение от идеальной прямой не превышало 5°), а потом начинал все более отклоняться от первоначального направления. В конце концов, он останавливался, далеко не дойдя до края.

Пусть теперь человек идет (вернее, блуждает) в лесу со скоростью 2 километра в час (для дороги это очень медленно, но для густого леса – очень быстро), тогда если величина l равна 20 метрам, то за час он пройдет 2 км, но сместится всего лишь на 200 м, за два часа – примерно на 280 м, за три часа – 350 м, за 4 часа – 400 м и т. д. А двигаясь по прямой с такой скоростью, человек за 4 часа прошел бы 8 километров, поэтому в инструкциях по технике безопасности полевых работ есть такое правило: если ориентиры потеряны, надо оставаться на месте, обустраивать убежище и ждать окончания ненастья (может выглянуть солнце) или помощи. В лесу же двигаться по прямой помогут ориентиры – деревья или кусты, причем каждый раз надо держаться двух таких ориентиров – одного спереди, другого сзади. Но, конечно, лучше всего брать с собой компас...

Илья Леенсон

Литература:

Марио Льоцци. История физики . М., Мир, 1970
Kerker M. Brownian Movements and Molecular Reality Prior to 1900 . Journal of Chemical Education, 1974, vol. 51, № 12
Леенсон И.А. Химические реакции . М., Астрель, 2002



Роберт Броун, известный британский ботаник, родился 21 декабря 1773 году в шотландском городе Монтрозе, учился в Абердине, в Эдинбургском университете в 1789-1795 годах изучал медицину и ботанику.


Благодаря усердным занятиям естественными науками и дружбой с ботаником Джозефом Банксом, он был назначен ботаником в экспедиции, отправленной в 1801 году на исследования берегов Австралии. В 1805 году Броун возвратился в Англию, привезя с собой около 4 000 видов австралийских растений, множество птиц и минералов и впоследствии издал свои сочинения относительно растительного мира.


Член Лондонского королевского общества (с 1810 года). С 1810 по 1820 год Роберт Броун заведовал Линнеевской библиотекой. В 1820 году он стал библиотекарем и хранителем ботанического отделения Британского музея, куда после смерти Банкса были переданы коллекции последнего. Благодаря этим собраниям и библиотеке и той массе растений различнейших стран, какой он всегда был окружён, Броун был лучшим знатоком растений.




Броуновское движение



Это явление, открытое Р. Броуном в 1827 г. при проведении исследования пыльцы растений, представляет собой беспорядочное движение микроскопических частиц (броуновские частицы) твёрдого вещества (пылинки, частички пыльцы растения и т.д.), вызываемое тепловым движением частиц жидкости (или газа). Броуновское движение является следствием и свидетельством существования теплового движения.


Как-то он разглядывал под микроскопом выделенные из клеток пыльцы североамериканского растения, взвешенные в воде удлиненные цитоплазматические зерна. Неожиданно Броун увидел, что мельчайшие твердые крупинки, которые едва можно было разглядеть в капле воды, непрерывно дрожат и передвигаются с места на место. Он установил, что эти движения, по его словам, «не связаны ни с потоками в жидкости, ни с ее постепенным испарением, а присущи самим частичкам».


Ядра растительных клеток



Броун первым определил ядро в растительной клетке и опубликовал эти сведения в 1831 году. Он дал ему название «Nucleus», или «Areola». Первый термин стал общепринятым и сохранился по настоящее время, второй же распространения не получил и забыт. Весьма важно, что Броун настаивал на постоянном наличии ядра во всех живых клетках.

Роберт Броун родился 21 декабря 1773 года в семье протестантского священника. Учился в колледже Маришаля при Абердинском университете, затем в Эдинбургском университете , где изучал медицину и ботанику. В 1795 году поступил помощником хирурга в Северный полк шотландской милиции, с которым находился в Ирландии. Здесь Броун собирал местные растения и встретил английского натуралиста Джозефа Банкса (1743-1820), по рекомендации которого он был назначен ботаником в экспедиции, отправленной в 1801 году на корабле «Инвестигейтор» для исследования берегов Австралии . В 1805 году Броун возвратился в Англию, привезя с собой около 4 000 видов австралийских растений, множество птиц и минералов для коллекции Банкса.

В 1810-1820 годах. Броун заведовал Линнеевской библиотекой и обширными коллекциями Банкса, который в то время был президентом Лондонского королевского общества. В 1820 году он стал библиотекарем и хранителем ботанического отделения Британского музея , куда после смерти Банкса были переданы его коллекции. В 1849-1853 годах Роберт Броун был президентом Линнеевского общества в Лондоне.

Морфолого-эмбриологические исследования ученого имели большое значение для построения естественной системы растений. Броун открыл зародышевый мешок в семяпочке (1825), показал, что семяпочки у хвойных и саговников не заключены в завязь, чем установил основное различие между покрытосеменными и голосеменными растениями; в семяпочках хвойных растений он открыл архегонии . Броун впервые правильно описал ядро в растительных клетках (1831).

В 1827 году ученый проводил исследования пыльцы растений. Он, в частности, интересовался, как пыльца участвует в процессе оплодотворения. Однажды он разглядывал под микроскопом выделенные из клеток пыльцы североамериканского растения Clarkia pulchella взвешенные в воде удлиненные цитоплазматические зерна. Неожиданно Броун увидел, что мельчайшие твердые крупинки, которые едва можно было разглядеть в капле воды, непрерывно дрожат и передвигаются с места на место. Он установил, что эти движения, по его словам, «не связаны ни с потоками в жидкости, ни с ее постепенным испарением, а присущи самим частичкам». Наблюдение Броуна подтвердили другие ученые. Это открытие было позднее названо его именем (