Прямолинейное и криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью

При помощи данного урока вы сможете самостоятельно изучить тему «Прямолинейное и криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью». Вначале мы охарактеризуем прямолинейное и криволинейное движение, рассмотрев, как при этих видах движения связаны вектор скорости и приложенная к телу сила. Далее рассмотрим частный случай, когда происходит движение тела по окружности с постоянной по модулю скоростью.

На предыдущем уроке мы рассмотрели вопросы, связанные с законом всемирного тяготения. Тема сегодняшнего урока тесно связана с этим законом, мы обратимся к равномерному движению тела по окружности.

Ранее мы говорили, что движение - это изменение положения тела в пространстве относительно других тел с течением времени. Движение и направление движения характеризуются в том числе и скоростью. Изменение скорости и сам вид движения связаны с действием силы. Если на тело действует сила, то тело изменяет свою скорость.

Если сила направлена параллельно движению тела, то такое движение будет прямолинейным (рис. 1).

Рис. 1. Прямолинейное движение

Криволинейным будет такое движение, когда скорость тела и сила, приложенная к этому телу, направлены друг относительно друга под некоторым углом (рис. 2). В этом случае скорость будет изменять свое направление.

Рис. 2. Криволинейное движение

Итак, при прямолинейном движении вектор скорости направлен в ту же сторону, что и сила, приложенная к телу. А криволинейным движением является такое движение, когда вектор скорости и сила, приложенная к телу, расположены под некоторым углом друг к другу.

Рассмотрим частный случай криволинейного движения, когда тело движется по окружности с постоянной по модулю скоростью. Когда тело движется по окружности с постоянной скоростью, то меняется только направление скорости. По модулю она остается постоянной, а направление скорости изменяется. Такое изменение скорости приводит к наличию у тела ускорения, которое называется центростремительным .

Рис. 6. Движение по криволинейной траектории

Если траектория движения тела является кривой, то ее можно представить как совокупность движений по дугам окружностей, как это изображено на рис. 6.

На рис. 7 показано, как изменяется направление вектора скорости. Скорость при таком движении направлена по касательной к окружности, по дуге которой движется тело. Таким образом, ее направление непрерывно меняется. Даже если скорость по модулю остается величиной постоянной, изменение скорости приводит к появлению ускорения:

В данном случае ускорение будет направлено к центру окружности. Поэтому оно называется центростремительным.

Почему центростремительное ускорение направлено к центру?

Вспомним, что если тело движется по криволинейной траектории, то его скорость направлена по касательной. Скорость является векторной величиной. У вектора есть численное значение и направление. Скорость по мере движения тела непрерывно меняет свое направление. То есть разность скоростей в различные моменты времени не будет равна нулю (), в отличие от прямолинейного равномерного движения.

Итак, у нас есть изменение скорости за какой-то промежуток времени . Отношение к - это ускорение. Мы приходим к выводу, что, даже если скорость не меняется по модулю, у тела, совершающего равномерное движение по окружности, есть ускорение.

Куда же направлено данное ускорение? Рассмотрим рис. 3. Некоторое тело движется криволинейно (по дуге). Скорость тела в точках 1 и 2 направлена по касательной. Тело движется равномерно, то есть модули скоростей равны: , но направления скоростей не совпадают.

Рис. 3. Движение тела по окружности

Вычтем из скорость и получим вектор . Для этого необходимо соединить начала обоих векторов. Параллельно перенесем вектор в начало вектора . Достраиваем до треугольника. Третья сторона треугольника будет вектором разности скоростей (рис. 4).

Рис. 4. Вектор разности скоростей

Вектор направлен в сторону окружности.

Рассмотрим треугольник, образованный векторами скоростей и вектором разности (рис. 5).

Рис. 5. Треугольник, образованный векторами скоростей

Данный треугольник является равнобедренным (модули скоростей равны). Значит, углы при основании равны. Запишем равенство для суммы углов треугольника:

Выясним, куда направлено ускорение в данной точке траектории. Для этого начнем приближать точку 2 к точке 1. При таком неограниченном прилежании угол будет стремиться к 0, а угол - к . Угол между вектором изменения скорости и вектором самой скорости составляет . Скорость направлена по касательной, а вектор изменения скорости направлен к центру окружности. Значит, ускорение тоже направлено к центру окружности . Именно поэтому данное ускорение носит название центростремительное .

Как найти центростремительное ускорение?

Рассмотрим траекторию, по которой движется тело. В данном случае это дуга окружности (рис. 8).

Рис. 8. Движение тела по окружности

На рисунке представлены два треугольника: треугольник, образованный скоростями, и треугольник, образованный радиусами и вектором перемещения. Если точки 1 и 2 очень близки, то вектор перемещения будет совпадать с вектором пути. Оба треугольника являются равнобедренными с одинаковыми углами при вершине. Таким образом, треугольники подобны. Это значит, что соответствующие стороны треугольников относятся одинаково:

Перемещение равно произведению скорости на время: . Подставив данную формулу, можно получить следующее выражение для центростремительного ускорения:

Угловая скорость обозначается греческой буквой омега (ω), она говорит о том, на какой угол поворачивается тело за единицу времени (рис. 9). Это величина дуги в градусной мере, пройденной телом за некоторое время.

Рис. 9. Угловая скорость

Обратим внимание, что если твердое тело вращается, то угловая скорость для любых точек на этом теле будет величиной постоянной. Ближе точка располагается к центру вращения или дальше - это не важно, т. е. от радиуса не зависит.

Единицей измерения в этом случае будет либо градус в секунду (), либо радиан в секунду (). Часто слово «радиан» не пишут, а пишут просто . Для примера найдем, чему равна угловая скорость Земли. Земля делает полный поворот на за ч, и в этом случае можно говорить о том, что угловая скорость равна:

Также обратите внимание на взаимосвязь угловой и линейной скоростей:

Линейная скорость прямо пропорциональна радиусу. Чем больше радиус, тем больше линейная скорость. Тем самым, удаляясь от центра вращения, мы увеличиваем свою линейную скорость.

Необходимо отметить, что движение по окружности с постоянной скоростью - это частный случай движения. Однако движение по окружности может быть и неравномерным. Скорость может изменяться не только по направлению и оставаться одинаковой по модулю, но и меняться по своему значению, т. е., кроме изменения направления, существует еще изменение модуля скорости. В этом случае мы говорим о так называемом ускоренном движении по окружности.

Что такое радиан?

Существует две единицы измерения углов: градусы и радианы. В физике, как правило, радианная мера угла является основной.

Построим центральный угол , который опирается на дугу длиной .

Сегодня мы продолжим изучать движение. Нами были рассмотрены случаи, когда тела двигались только прямолинейно, то есть по прямой линии. Но так ли уж часто такое движение мы встречаем в жизни? Конечно же, нет. Тела обычно движутся по криволинейным траекториям. Движение планет, поездов, животных - все это будет примером криволинейного движения. Описать такое движение сложнее. Изменение координат будет происходить, как минимум, по двум осям, например OX и OY. Сравним, как направлены вектора скорости и перемещения при прямолинейном и криволинейном движении. Когда тело движется по прямой, то направление вектора скорости и вектора перемещения всегда совпадают. Для того, чтобы ответить на этот же вопрос в случае криволинейного движения, рассмотрим рисунок. Предположим, что тело движется из точки М1 в точку М2 по дуге. Путь - это длина дуги, перемещение - вектор М1М2. В геометрии, такой отрезок называют хордой. Мы видим, что направление скорости и перемещения не совпадают. При криволинейном движении мы будем говорить о мгновенной скорости. Мгновенная скорость тела в каждой точки криволинейной траектории направлена по касательной к траектории в этой точке. Убедиться в этом можно, наблюдая за брызгами из-под колес автомобиля, они так же вылетают по касательной к окружности колеса. Обратите внимание, что скорость имеет в каждой точке криволинейной траектории различное направление, поэтому даже при условии, что модуль скорости остался прежним, если изменилось направление движения, то рассматривать нужно новый вектор. Из того, что скорость непрерывно меняется, следует, что и ускорение так же будет меняться. Следовательно, криволинейное движение - это движение с ускорением. Предположим, тело движется по некоторой криволинейной траектории. Таких траекторий может быть бесчисленное множество, неужели, для каждого из них придется описывать свои законы движения? Оказывается, отдельные части траектории можно, приблизительно, представить, как дуги окружностей. И само криволинейное движение, в большинстве случаев, можно представить как совокупность движений по дугам окружностей различного радиуса. Изучив движение по окружности, мы сможем описывать более сложные случаи движения. Запомним, если скорость тела и действующая на него сила направлены вдоль одной прямой, то тело движется прямолинейно, а если они направлены вдоль пересекающихся прямых, то тело движется криволинейно. Определите, по какой траектории полетит камень, вращающийся на нити, если нить внезапно оборвется? Мгновенная скорость камня направлена по касательной к криволинейной линии, следовательно, в момент обрыва, согласно закону инерции, тело будет двигаться, сохраняя прежнюю скорость, то есть по этой же касательной. Грузовик движется по криволинейной траектории. Скорость движения по модулю величина постоянная. Можно ли утверждать, что ускорение грузовика равно нулю? Утверждать, что ускорение грузовика равно нулю нельзя, так как скорость имеет в каждой точке криволинейной траектории различное направление, поэтому даже при условии, что модуль скорости остался прежним, то рассматривать нужно новый вектор. Из того, что скорость непрерывно меняется, следует, что и ускорение так же будет изменяться. Мы уже знаем, что причиной ускорения является сила. Укажите, на каких участках криволинейного движения сила действовала?
Ответ обоснуйте. На траектории сделаны отметки положения тела через равные промежутки времени. Сила действовала на участке 0-3. Тело двигалось прямолинейно, но скорость тела менялась (тело двигалось ускоренно), то есть под действием силы. Сила действовала на участке 7-8. Величина скорости не изменилась, но направление поменялось (тело двигалось ускоренно), то есть под действием силы.

Мы знаем, что все тела притягиваются друг к другу. В частности, Луна, например, притягивается к Земле. Но возникает вопрос: если Луна притягивается к Земле, почему она вращается вокруг нее, а не падает на Землю?

Для того чтобы ответить на этот вопрос, необходимо рассмотреть виды движения тел. Мы уже знаем, что движение может быть равномерным и неравномерным , но существуют и другие характеристики движения. В частности, в зависимости от направления различают прямолинейное и криволинейное движение.

Прямолинейное движение

Известно, что тело двигается под действием приложенной к нему силы. Можно проделать несложный эксперимент, показывающий, как направление движения тела будет зависеть от направления приложенной к нему силы. Для этого потребуется произвольный предмет небольшого размера, резиновый шнур и горизонтальная или вертикальная опора.

Привязывает шнур одним концом к опоре. На другом конце шнура закрепляем наш предмет. Теперь, если мы оттянем наш предмет на некоторое расстояние, а потом отпустим, то увидим, как он начнет двигаться в направлении опоры. Его движение обусловлено силой упругости шнура. Именно так Земля притягивает все тела на ее поверхности, а также летящие из космоса метеориты.

Только вместо силы упругости выступает сила притяжения. А теперь возьмем наш предмет на резинке и толкнем его не в направлении к/от опоры, а вдоль нее. Если бы предмет не был закреплен, он бы просто улетел в сторону. Но так как его держит шнур, то шарик, двигаясь в сторону, слегка растягивает шнур, тот тянет его обратно, и шарик чуть меняет свое направление в сторону опоры.

Криволинейное движение по окружности

Так происходит в каждый момент времени, в итоге шарик движется не по первоначальной траектории, но и не прямолинейно к опоре. Шарик будет двигаться вокруг опоры по окружности. Траектория его движения будет криволинейной. Именно так вокруг Земли двигается Луна, не падая на нее.

Именно так притяжение Земли захватывает метеориты, которые летят близко от Земли, но не прямо на нее. Эти метеориты становятся спутниками Земли. При этом от того, каким был их первоначальный угол движения по отношению к Земле, зависит, как долго они пробудут на орбите. Если их движение было перпендикулярно Земле, то они могут находиться на орбите бесконечно долго. Если же угол был меньше 90˚, то они будут двигаться по снижающейся спирали, и постепенно все-таки упадут на землю.

Движение по окружности с постоянной по модулю скоростью

Еще один момент, который следует отметить, это то, что скорость криволинейного движения по окружности меняется по направлению, но одинакова по значению. А это означает, что движение по окружности с постоянной по модулю скоростью происходит равноускорено.

Так как направление движения меняется, значит, движение происходит с ускорением. А так как оно меняется одинаково в каждый момент времени, следовательно, движение будет равноускоренным. А сила притяжения является силой, которая обусловливает постоянное ускорение.

Луна двигается вокруг Земли именно благодаря этому, но если вдруг когда-либо движение Луны изменится, например, в нее врежется очень крупный метеорит, то она вполне может сойти со своей орбиты и упасть на Землю. Нам остается лишь надеяться, что этот момент не наступит никогда. Такие дела.

МБОУ «Чубаевская ООШ» Урмарского района ЧР

УРОК ФИЗИКИ в 9 КЛАССЕ

«Прямолинейное и криволинейное движение.

Движение тела по окружности.»

Учитель: Степанова Е.А.

Чубаево – 2013


Тема: Прямолинейное и криволинейное движение. Движение тела по окружности с постоянной по модулю скоростью.

Цели урока: дать школьникам представление прямолинейном и о криволинейном движении, частоте, периоде. Познакомить с формулами для нахождения этих величин и единицами измерения.
Образовательные задачи: сформировать понятие о прямолинейном и криволинейном движении, величинах его характеризующих, единицах измерения этих величин и формулах для вычисления.
Развивающие задачи: продолжать формирование умений применять теоретические знания для решения практических задач, развивать интерес к предмету и логическое мышление.
Воспитательные задачи: продолжать развивать кругозор учащихся; умение вести записи в тетрадях, наблюдать, замечать закономерности явлений, аргументировать свои выводы.

Оборудование: Презентация.Компьютер. Мультимедийный проектор Мяч, шарик на нити, наклонный желоб, шарик, игрушечный автомобиль, юла, модель часов со стрелками, секундомеры

Ход урока

I. Организационный момент. Вводное слово учителя.Здравствуйте, мои юные друзья!Позвольте начать наш сегодняшний урок с таких строк «Загадки страшные природы повсюду в воздухе висят» (Н.Заболоцкий, поэма «Безумный волк») (слайд 1)

2. Актуализация знаний

- Какие виды движения вы знаете? - Чем отличаются прямолинейные и криволинейные движения? - Сравните траекторию и путь для прямолинейного и криволинейного движений. Уч:.Мы знаем, что все тела притягиваются друг к другу. В частности, Луна, например, притягивается к Земле. Но возникает вопрос: если Луна притягивается к Земле, почему она вращается вокруг нее, а не падает на Землю? (сл-)

Для того чтобы ответить на этот вопрос, необходимо рассмотреть виды движения тел. Мы уже знаем, что движение может быть равномерным и неравномерным, но существуют и другие характеристики движения (слайд)

3.Проблемная ситуация: Чем отличаются следующие движения?

Демонстрации : падение шарика по прямой, скатывание шарика по прямому желобу. И по круговой дорожке, вращение шарика на нити, перемещение игрушечного автомобиля по столу, движение шарика, брошенного под углом к горизонту…(по виду траектории )

Уч: По виду траектории эти движения можно разделить на движения по прямой линии и по кривой линии.(слайд)

Попробуем дать определения криволинейного и прямолинейного движений. (Запись в тетради ) прямолинейное движение – движение по прямой траектории. Криволинейное движение – движение по непрямой (кривой) траектории.

4. Итак, Тема урока

Прямолинейное и криволинейное движение. Движение по окружности (слайд)

Уч: Рассмотрим два примера криволинейного движения: по ломаной линии и по кривой (зарисовать ). Чем отличаются эти траектории?

Ученики: В первом случае траекторию можно разбить на прямолинейные участки и рассмотреть каждый участок отдельно. Во втором случае можно разбить кривую на дуги окружностей и прямолинейные участки. Т.об. это движение можно рассматривать как последовательность движений, происходящих по дугам окружностей различного радиуса. Поэтому чтобы изучить криволинейное движение, нужно изучить движение по окружности. (слайд 15)

Сообщение 1 Движение тела по окружности

В природе и технике очень часто встречаются движения, траектории которых представляют собой не прямые, а кривые линии. Это криволинейное движение. По криволинейным траекториям движутся в космическом пространстве планеты и искусственные спутники Земли, а на Земле всевозможные средства транспорта, части машин и механизмов, воды рек, воздух атмосферы и т.д.

Если прижать к вращающемуся точильному камню конец стального прутика, то раскаленные частицы, отрывающиеся от камня, будут видны в виде искр. Эти частицы летят с той скоростью, которой они обладали в момент отрыва от камня. Хорошо видно, что направление движения искр совпадает с касательной к окружности в той точке, где пруток касается камня. По касательной движутся брызги от колес буксующего автомобиля. (Зарисовать .)

Направление и модуль скорости

Уч: Таким образом, мгновенная скорость тела в разных точках криволинейной траектории имеет различное направление. По модулю же скорость может быть всюду одинакова или изменяться от точки к точке.(слайд)

Но даже если модуль скорости не изменяется, ее нельзя считать постоянной. Скорость – векторная величина. Для векторной величины модуль и направление одинаково важны. А раз меняется скорость , значит есть ускорение. Поэтому криволинейное движение – это всегда движение с ускорением , даже если по модулю скорость постоянная.(слайд)(видиоролик1)

Ускорение тела, равномерно движущегося по окружности, в любой точке центростремительное , т.е. направлено по радиусу окружности к ее центру. В любой точке вектор ускорения перпендикулярен вектору скорости. (Нарисовать )

Модуль центростремительного ускорения: а ц =V 2 /R (написать формулу ), где V – линейная скорость тела, а R – радиус окружности.(слайд)

Центростремительная сила - сила, действующая на тело при криволинейном движении в любой момент времени, всегда направлена вдоль радиуса окружности к центру (как и центростремительное ускорение). А сила, действующая на тело пропорционально ускорению. F=ma, то

Характеристики движения тела по окружности

Движение по окружности часто характеризуют не скоростью движения, а промежутком времени, за который тело совершает один полный оборот. Эта величина называется периодом обращения и обозначается буквой Т. (Записать определение периода ). При движении по окружности тело за определенный промежуток времени вернется в первоначальную точку. Поэтому движение по окружности – периодическое.

Период – время одного полного оборота.

Если тело за время t совершает N оборотов, то как найти период? (формула)

Найдем связь между периодом обращения Т и модулем скорости при равномерном движении по окружности радиуса R. Т.к. V=S/t = 2πR/Т. (Записать формулу в тетради )

Сообщение2 Период – это величина, которая достаточно часто встречается в природе и технике . Так, мы знаем. Что Земля вращается вокруг своей оси и средний период вращения равен 24 часам. Полный оборот Земли вокруг Солнца происходит примерно за 365,26 суток. Рабочие колеса гидротурбин делают один полный оборот за время, равное 1 секунде. А винт вертолета имеет период обращения от 0,15 до 0,3 секунды. Период кровообращения у человека равен примерно 21-22 секундам.

Уч: Движение тела по окружности можно охарактеризовать еще одной величиной – числом оборотов в единицу времени. Ее называют частотой обращения:ν= 1/Т. Единицей измерения частоты: с -1 =Гц. (Записать определение, единицу и формулу )(слайд)

Как найти частоту если тело за время t совершает N оборотов (формула)

Уч: Какой вывод можно сделать о соотношении между этими величинами? (период и частота – это взаимообратные величины)

Сообщение3 Коленчатые валы двигателей трактора имеют частоту вращения от 60 до 100 оборотов в секунду. Ротор газовой турбины вращается с частотой от 200 до 300 об/с. Пуля. Вылетающая из автомата Калашникова, вращается с частотой 3000 об/с. Для измерения частоты существуют приборы, так называемые круги для измерения частоты, основанные на оптических иллюзиях. На таком круге нанесены черные полоски и стоят частоты. При вращении такого круга черные полоски образуют круг при соответствующей этому кругу частоте. Также для измерения частоты используют тахометры. (слайд)

Связь Скорости вращения и периода вращения

ℓ - длина окружности

ℓ=2πr V=2πr/T

Дополнительные характеристики движения по окружности. (слайд)

Уч: Вспомним, какими величинами характеризуется прямолинейное движение?

Перемещение, скорость,ускорение.

Уч: по аналогии движение по окружности - теми же величинами – угловое перемещение, угловая скорость и угловое ускорение.

Угловое перемещение: (слайд) Это угол между двумя радиусами. Обозначается – Измеряется в рад.или град.

Уч: Вспомним из курса алгебры как радиан связан с градусом?

2пи рад.=360 град. Пи=3,14, то 1 рад.=360/6.28=57 град.

Угловая скорость w=

Единица измерения угловой скорости - рад/с

Уч:. Подумайте, чему будет равна угловая скорость, если тело совершило один полный оборот?

Ученик. Так как тело совершило полный оборот, то время его движения равно периоду, а угловое перемещение 360° или 2 . Следовательно, угловая скорость равна .

Учитель: Итак о чем мы сегодня говорили? (о криволинейном движении)

5. Вопросы для закрепления.

Какое движение называется криволинейным?

Какое движение является частным случаем криволинейного движения?

Как направлена мгновенная скорость при криволинейном движении?

Почему ускорение называется центростремительным?

Что называют периодом и частотой? В каких единицах измеряют?

Как эти величины взаимосвязаны?

Как же можно описать криволинейное движение?

Как направлено ускорение тела, движущегося по окружности с постоянной по модулю скоростью?

6.Экспериментальная работа

Измерить период и частоту тела, подвешенного на нити и вращающегося в горизонтальной плоскости.

(на партах у вас тела, подвешенные на.нити, секундомер. Тело вращайте в горизонтальной плоскости равномерно и измерьте время 10 полных вращений.Вычислите период и частоту)

7. Закрепление. Решение задач. (слайд)

    А.С.Пушкин. «Руслан и Людмила»

У лукоморья дуб зеленый,

Златая цепь на дубе том,

И днем и ночью кот ученый

Все ходит по цепи кругом.

В: Как называется такое движение кота? Определить частоту и период и угловую скорость если за 2 мин. Он делает 12 кругов. (ответ: 0,1 1/с, Т=10с, w=0,628рад/с)

    П.П.Ершов «Конек-Горбунок»

Ну-с, так едет наш Иван

За кольцом на окиян

Горбунок летит как ветер,

И почин на первый вечер

Верст сто тысяч отмахал

И нигде не отдыхал.

В: Сколько раз за первый вечер Конек-Горбунок обогнул Землю? Земля имеет форму шара, а одна верста равна примерно 1066 м. (ответ:2,5 раза)

8.Тест Проверка усвоения нового материала (тесты на бумаге)

Тест 1.

1. Примером криволинейного движения являются...

а) падение камня;
б) поворот машины на право;
в) бег спринтера на 100 – метровке.

2. Минутная стрелка часов делает один полный оборот. Чему равен период обращения?

а) 60 с; б) 1/3600 с; в) 3600 с.

3. Колесо велосипеда делает один оборот за 4 с. Определите частоту вращения.

а) 0,25 1/с; б) 4 1/с; в) 2 1/с.

4. Винт моторной лодки делает 25 оборотов за 1 с. Чем, равна угловая скорость винта?

а) 25 рад/с; б) /25 рад/с; в) 50 рад/с.

5. Определите частоту вращения сверла электрической дрели, если его угловая скорость равна 400 .

а)800 1/с; б) 400 1/с; в) 200 1/с.

Ответы: б; в; а; в; в.

Тест 2.

1. Примером криволинейного движения является…

а) движение лифта;
б) прыжок лыжника с трамплина;
в) падение шишки с нижней ветки ели в безветренную погоду.

Секундная стрелка часов делает один полный оборот. Чему равна её частота обращения?

а) 1/60 с; б) 60 с; в) 1 с.

3. Колесо машины делает 20 оборотов за10 с. Определите период обращения колеса?

а) 5 с; б) 10 с; в) 0,5 с.

4. Ротор мощной паровой турбины делает 50 оборотов за 1 с. Вычислите угловую скорость.

а) 50 рад/с; б) /50 рад/с; в) 10 рад/с.

5. Определите период обращения звёздочки велосипеда, если угловая скорость равна.

а) 1 с; б) 2 с; в)0,5 с.

Ответы: б; а; в; в; б.

Самопроверка

9. Рефлексия.

Давайте вместе с вами заполним Механизм ЗУХ (знаю, узнал, хочу узнать)

10.Подведение итогов, оценки за урок

11. Домашнее задание параграфы 18,19,

домашнее исследование: вычислить по возможности все характеристики любого вращающегося тела (колеса велосипеда, минутной стрелки часов)

Слайд 2

Тема урока: Прямолинейное и криволинейное движение. Движение тела по окружности.

Слайд 3

Механические движения Прямолинейное Криволинейное Движение по эллипсу Движение по параболе Движение по гиперболе Движение по окружности

Слайд 4

Цели урока: 1. Знать основные характеристики криволинейного движения и связь между ними. 2. Уметь применять полученные знания при решении экспериментальных задач.

Слайд 5

План изучения темы

Изучение нового материала Условие прямолинейного и криволинейного движения Направление скорости тела при криволинейном движении Центростремительное ускорение Период обращения Частота обращения Центростремительная сила Выполнение фронтальных экспериментальных заданий Самостоятельная работа в форме тестов Подведение итогов

Слайд 6

По виду траектории движение бывает: Криволинейное Прямолинейное

Слайд 7

Условия прямолинейного и криволинейного движения тел (Опыт с шариком)

Слайд 8

стр.67 Запомнить! Работа с учебником

Слайд 9

Движение по окружности – частный случай криволинейного движения

Слайд 10

Характеристики движения – линейная скорость криволинейного движения () – центростремительное ускорение () – период обращения() – частота обращения ()

Слайд 11

Запомнить. Направления движения частиц совпадает с касательной к окружности

Слайд 12

При криволинейном движении скорость тела направлена по касательной к окружности Запомнить.

Слайд 13

При криволинейном движении ускорение направлено к центру окружности Запомнить.

Слайд 14

Почему ускорение направлено к центру окружности?

Слайд 15

Определение скорости - скорость - период обращения r- радиус окружности

Слайд 16

При движении тела по окружности модуль вектора скорости может меняться или оставаться постоянным, но направление вектора скорости обязательно меняется. Поэтому вектор скорости является величиной переменной. Значит движение по окружности всегда происходит с ускорением.

Запомнить!

Слайд 17

Центростремительная сила сила упругости сила трения сила тяготения Модель атома водорода

Слайд 18

1. Установить зависимость скорости от радиуса2. Измерить ускорение при движении по окружности3. Установить зависимость центростремительного ускорения от числа оборотов в единицу времени.

Эксперимент

Слайд 19

Вариант 1Вариант 2 1.Тело движется равномерно по окружности в направлении по часовой стрелки против часовой стрелки Как направлен вектор ускорения при таком движении? а) 1 ; б) 2 ; в) 3 ; г) 4 . 2. Автомобиль движется с постоянной по модулю скоростью по траектории рисунка. В какой из указанных точек траектории центростремительное ускорение минимально максимально? 3. Во сколько раз изменится центростремительное ускорение, если скорость материальной точки увеличитьуменьшить в 3 раза? а) увеличится в 9 раз; б) уменьшится в 9 раз; в) увеличится в 3 раза; г) уменьшится в 3 раза. Самостоятельная работа

Слайд 20

Продолжи предложение Сегодня на уроке я понял, что… Мне понравилось на уроке то, что… На уроке меня порадовало… Я удовлетворён своей работой, потому что… Мне хотелось бы порекомендовать…

Слайд 21

Домашнее задание: §18-19, упр. 18 (1, 2) Дополнительно упр. 18 (5) Спасибо за внимание. Спасибо за урок!

Посмотреть все слайды