Jak znaleźć liczbę czterech liczb. Nod i nok liczb - największy wspólny dzielnik i najmniejsza wspólna wielokrotność kilku liczb

Definicja. Największy liczba naturalna, przez który liczby a i b są dzielone bez reszty, nazywa się największy wspólny dzielnik (NWD) te liczby.

Znajdźmy największy wspólny dzielnik numery 24 i 35.
Dzielnikami liczby 24 są liczby 1, 2, 3, 4, 6, 8, 12, 24, a dzielnikami liczby 35 są liczby 1, 5, 7, 35.
Widzimy, że liczby 24 i 35 mają tylko jeden wspólny dzielnik - liczbę 1. Takie liczby nazywane są wzajemnie pierwsze.

Definicja. Nazywa się liczby naturalne wzajemnie pierwsze, jeśli ich największy wspólny dzielnik (NWD) wynosi 1.

Największy wspólny dzielnik (GCD) można znaleźć bez wypisywania wszystkich dzielników danych liczb.

Rozkładając liczby 48 i 36, otrzymujemy:
48 = 2 * 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3.
Z czynników wchodzących w skład rozwinięcia pierwszej z tych liczb skreślamy te, które nie są uwzględnione w rozwinięciu drugiej liczby (tj. dwie dwójki).
Pozostałe czynniki to 2 * 2 * 3. Ich iloczyn to 12. Liczba ta jest największym wspólnym dzielnikiem liczb 48 i 36. Znaleziono także największy wspólny dzielnik trzech lub więcej liczb.

Aby znaleźć największy wspólny dzielnik

2) spośród czynników wchodzących w skład rozwinięcia jednej z tych liczb skreślić te, które nie wchodzą w skład rozwinięcia innych liczb;
3) znaleźć iloczyn pozostałych czynników.

Jeśli wszystkie podane liczby są podzielne przez jedną z nich, to ta liczba jest podzielna największy wspólny dzielnik podane liczby.
Na przykład największym wspólnym dzielnikiem liczb 15, 45, 75 i 180 jest liczba 15, ponieważ wszystkie inne liczby są przez nią podzielne: 45, 75 i 180.

Najmniejsza wspólna wielokrotność (LCM)

Definicja. Najmniejsza wspólna wielokrotność (LCM) liczby naturalne a i b to najmniejsza liczba naturalna będąca wielokrotnością obu a i b. Najmniejszą wspólną wielokrotność (LCM) liczb 75 i 60 można znaleźć bez zapisywania wielokrotności tych liczb z rzędu. Aby to zrobić, rozłóżmy 75 i 60 na czynniki pierwsze: 75 = 3 * 5 * 5 i 60 = 2 * 2 * 3 * 5.
Zapiszmy czynniki wchodzące w skład rozwinięcia pierwszej z tych liczb i dodajmy do nich brakujące czynniki 2 i 2 z rozwinięcia drugiej liczby (czyli łączymy czynniki).
Otrzymujemy pięć czynników 2 * 2 * 3 * 5 * 5, których iloczyn wynosi 300. Ta liczba jest najmniejszą wspólną wielokrotnością liczb 75 i 60.

Znajdują także najmniejszą wspólną wielokrotność trzech lub więcej liczb.

Do znajdź najmniejszą wspólną wielokrotność kilka liczb naturalnych, potrzebujesz:
1) rozłożyć je na czynniki pierwsze;
2) zapisz czynniki składające się na rozwinięcie jednej z liczb;
3) dodać do nich brakujące czynniki z rozwinięć pozostałych liczb;
4) znaleźć iloczyn uzyskanych czynników.

Zauważ, że jeśli jedna z tych liczb jest podzielna przez wszystkie inne liczby, to liczba ta jest najmniejszą wspólną wielokrotnością tych liczb.
Na przykład najmniejsza wspólna wielokrotność liczb 12, 15, 20 i 60 wynosi 60, ponieważ jest podzielna przez wszystkie te liczby.

Pitagoras (VI wiek p.n.e.) i jego uczniowie badali kwestię podzielności liczb. Numer, równa sumie Wszystkie jej dzielniki (bez samej liczby) nazwali liczbą doskonałą. Na przykład liczby 6 (6 = 1 + 2 + 3), 28 (28 = 1 + 2 + 4 + 7 + 14) są idealne. Kolejne liczby doskonałe to 496, 8128, 33 550 336. Pitagorejczycy znali tylko trzy pierwsze liczby doskonałe. Czwarty - 8128 - stał się znany w I wieku. N. mi. Piąty – 33 550 336 – odnaleziono w XV wieku. W 1983 roku znanych było już 27 liczb doskonałych. Ale naukowcy nadal nie wiedzą, czy istnieją liczby doskonałe nieparzyste, czy też istnieje największa liczba doskonała.
Zainteresowanie starożytnych matematyków liczbami pierwszymi wynika z faktu, że każda liczba jest albo pierwsza, albo można ją przedstawić w postaci iloczynu liczby pierwsze, czyli liczby pierwsze są jak cegły, z których zbudowane są pozostałe liczby naturalne.
Zapewne zauważyłeś, że liczby pierwsze w szeregu liczb naturalnych występują nierównomiernie – w niektórych częściach szeregu jest ich więcej, w innych – mniej. Ale im dalej posuniemy się w szeregu liczbowym, tym mniej popularne są liczby pierwsze. Powstaje pytanie: czy istnieje ostatnia (największa) liczba pierwsza? Starożytny grecki matematyk Euklides (III w. p.n.e.) w swojej książce „Elementy”, która przez dwa tysiące lat była głównym podręcznikiem matematyki, udowodnił, że liczb pierwszych jest nieskończenie wiele, czyli za każdą liczbą pierwszą kryje się jeszcze większa liczba pierwsza numer.
Aby znaleźć liczby pierwsze, inny grecki matematyk z tego samego okresu, Eratostenes, wymyślił tę metodę. Zapisał wszystkie liczby od 1 do jakiejś liczby, po czym skreślił jedynkę, która nie jest ani liczbą pierwszą, ani złożoną, następnie przekreślił przez jedynkę wszystkie liczby występujące po 2 (liczby będące wielokrotnością 2, czyli 4, 6, 8 itd.). Pierwszą pozostałą liczbą po 2 było 3. Następnie po dwójce wszystkie liczby występujące po 3 (liczby będące wielokrotnościami 3, tj. 6, 9, 12 itd.) zostały przekreślone. w końcu tylko liczby pierwsze pozostały nieskrzyżowane.


Zaprezentowany poniżej materiał stanowi logiczną kontynuację teorii z artykułu LCM - najmniejsza wspólna wielokrotność, definicja, przykłady, powiązanie LCM z NWD. Tutaj będziemy rozmawiać znajdowanie najmniejszej wspólnej wielokrotności (LCM), I szczególną uwagę Skupmy się na rozwiązywaniu przykładów. Najpierw pokażemy, jak oblicza się LCM dwóch liczb za pomocą NWD tych liczb. Następnie przyjrzymy się znajdowaniu najmniejszej wspólnej wielokrotności poprzez rozłożenie liczb na czynniki pierwsze. Następnie skupimy się na znalezieniu LCM trzech lub więcej liczb, a także zwrócimy uwagę na obliczenie LCM liczb ujemnych.

Nawigacja strony.

Obliczanie najmniejszej wspólnej wielokrotności (LCM) za pomocą GCD

Jednym ze sposobów znalezienia najmniejszej wspólnej wielokrotności jest relacja między LCM i GCD. Istniejące połączenie pomiędzy LCM i GCD pozwala obliczyć najmniejszą wspólną wielokrotność dwóch dodatnich liczb całkowitych przy użyciu znanego największego wspólnego dzielnika. Odpowiednia formuła to LCM(a, b)=a b:GCD(a, b) . Przyjrzyjmy się przykładom znajdowania LCM za pomocą podanego wzoru.

Przykład.

Znajdź najmniejszą wspólną wielokrotność dwóch liczb 126 i 70.

Rozwiązanie.

W tym przykładzie a=126, b=70. Skorzystajmy z związku pomiędzy LCM i NWD wyrażonego wzorem LCM(a, b)=a b:GCD(a, b). Oznacza to, że najpierw musimy znaleźć największy wspólny dzielnik liczb 70 i 126, po czym możemy obliczyć LCM tych liczb za pomocą zapisanego wzoru.

Znajdźmy NWD(126, 70) korzystając z algorytmu Euklidesa: 126=70·1+56, 70=56·1+14, 56=14·4, zatem GCD(126, 70)=14.

Teraz znajdujemy wymaganą najmniejszą wspólną wielokrotność: NWD(126, 70)=126·70:NWD(126, 70)= 126·70:14=630.

Odpowiedź:

LCM(126, 70)=630 .

Przykład.

Ile wynosi LCM(68, 34)?

Rozwiązanie.

Ponieważ 68 jest podzielne przez 34, wówczas NWD(68, 34)=34. Teraz obliczamy najmniejszą wspólną wielokrotność: NWD(68, 34)=68·34:NWD(68, 34)= 68.34:34=68.

Odpowiedź:

LCM(68, 34)=68.

Należy zauważyć, że poprzedni przykład pasuje do następującej reguły znajdowania LCM dla dodatnich liczb całkowitych a i b: jeśli liczba a jest podzielna przez b, to najmniejszą wspólną wielokrotnością tych liczb jest a.

Znalezienie LCM poprzez rozłożenie liczb na czynniki pierwsze

Innym sposobem znalezienia najmniejszej wspólnej wielokrotności jest rozłożenie liczb na czynniki pierwsze. Jeśli ułożysz iloczyn ze wszystkich czynników pierwszych danych liczb, a następnie wykluczysz z tego iloczynu wszystkie wspólne czynniki pierwsze występujące w rozkładach danych liczb, to otrzymany iloczyn będzie równy najmniejszej wspólnej wielokrotności danych liczb .

Podana zasada znajdowania LCM wynika z równości LCM(a, b)=a b:GCD(a, b). Rzeczywiście, iloczyn liczb aib jest równy iloczynowi wszystkich czynników biorących udział w rozszerzaniu liczb aib. Z kolei NWD(a, b) jest równe iloczynowi wszystkich czynników pierwszych występujących jednocześnie w rozwinięciach liczb a i b (co opisano w rozdziale o znajdowaniu NWD za pomocą rozwinięcia liczb na czynniki pierwsze).

Podajmy przykład. Powiedz nam, że 75=3,5,5 i 210=2,3,5,7. Utwórzmy iloczyn ze wszystkich czynników tych rozwinięć: 2,3,3,5,5,5,7 . Teraz z tego iloczynu wykluczymy wszystkie czynniki występujące zarówno w rozwinięciu liczby 75, jak i rozwinięciu liczby 210 (te czynniki to 3 i 5), wówczas iloczyn przyjmie postać 2,3,5,5,7 . Wartość tego iloczynu jest równa najmniejszej wspólnej wielokrotności 75 i 210, czyli NOC(75, 210)= 2,3,5,5,7=1050.

Przykład.

Rozłóż liczby 441 i 700 na czynniki pierwsze i znajdź najmniejszą wspólną wielokrotność tych liczb.

Rozwiązanie.

Rozłóżmy liczby 441 i 700 na czynniki pierwsze:

Otrzymujemy 441=3·3·7·7 i 700=2·2·5·5·7.

Zróbmy teraz iloczyn wszystkich czynników biorących udział w rozwinięciu tych liczb: 2,2,3,3,5,5,7,7,7. Wykluczmy z tego iloczynu wszystkie czynniki, które występują jednocześnie w obu rozwinięciach (jest tylko jeden taki czynnik – jest to liczba 7): 2,2,3,3,5,5,7,7. Zatem, LCM(441, 700)=2·2·3·3·5·5·7·7=44 100.

Odpowiedź:

NOC(441, 700)= 44 100 .

Regułę znajdowania LCM za pomocą faktoryzacji liczb na czynniki pierwsze można sformułować nieco inaczej. Jeśli brakujące czynniki z rozwinięcia liczby b dodamy do czynników z rozwinięcia liczby a, to wartość otrzymanego iloczynu będzie równa najmniejszej wspólnej wielokrotności liczb a i b.

Weźmy na przykład te same liczby 75 i 210, ich rozkład na czynniki pierwsze wygląda następująco: 75=3,5,5 i 210=2,3,5,7. Do czynników 3, 5 i 5 z rozwinięcia liczby 75 dodajemy brakujące czynniki 2 i 7 z rozwinięcia liczby 210 i otrzymujemy iloczyn 2,3,5,5,7, którego wartość wynosi równe LCM(75, 210).

Przykład.

Znajdź najmniejszą wspólną wielokrotność 84 i 648.

Rozwiązanie.

Najpierw uzyskujemy rozkład liczb 84 i 648 na czynniki pierwsze. Wyglądają jak 84=2·2·3·7 i 648=2·2·2·3·3·3·3. Do czynników 2, 2, 3 i 7 z rozwinięcia liczby 84 dodajemy brakujące czynniki 2, 3, 3 i 3 z rozwinięcia liczby 648 i otrzymujemy iloczyn 2 2 2 3 3 3 3 7, co jest równe 4 536 . Zatem pożądana najmniejsza wspólna wielokrotność 84 i 648 wynosi 4536.

Odpowiedź:

LCM(84, 648) = 4536.

Znajdowanie LCM trzech lub więcej liczb

Najmniejszą wspólną wielokrotność trzech lub więcej liczb można znaleźć, znajdując kolejno LCM dwóch liczb. Przypomnijmy odpowiednie twierdzenie, które pozwala znaleźć LCM trzech lub więcej liczb.

Twierdzenie.

Niech zostaną podane dodatnie liczby całkowite a 1 , a 2 , …, a k. Najmniejszą wspólną wielokrotność m k tych liczb można znaleźć poprzez kolejne obliczenia m 2 = LCM(a 1 , a 2) , m 3 = LCM(m 2 , a 3) , … , m k = LCM(m k−1 , a k) .

Rozważmy zastosowanie tego twierdzenia na przykładzie znalezienia najmniejszej wspólnej wielokrotności czterech liczb.

Przykład.

Znajdź LCM czterech liczb 140, 9, 54 i 250.

Rozwiązanie.

W tym przykładzie a 1 =140, a 2 =9, a 3 =54, a 4 =250.

Najpierw znajdujemy m 2 = LOC(a 1, a 2) = LOC(140, 9). Aby to zrobić, korzystając z algorytmu Euklidesa, wyznaczamy NWD(140, 9), mamy 140=9·15+5, 9=5·1+4, 5=4·1+1, 4=1·4, dlatego NWD(140, 9)=1, skąd NWD(140, 9)=140 9:NWD(140, 9)= 140·9:1=1260. Oznacza to, że m 2 = 1 260.

Teraz znajdujemy m 3 = LOC (m 2 , a 3) = LOC (1 260, 54). Obliczmy to poprzez NWD(1 260, 54), które również wyznaczamy za pomocą algorytmu Euklidesa: 1 260=54·23+18, 54=18·3. Wtedy gcd(1260, 54)=18, skąd gcd(1260, 54)= 1260·54:gcd(1260, 54)= 1260·54:18=3780. Oznacza to, że m 3 =3 780.

Pozostaje tylko znaleźć m 4 = LOC(m 3, a 4) = LOC(3 780, 250). Aby to zrobić, znajdujemy NWD(3,780, 250) za pomocą algorytmu Euklidesa: 3,780=250·15+30, 250=30,8+10, 30=10,3. Zatem GCM(3780, 250)=10, skąd GCM(3780, 250)= 3 780 250: NWD(3 780, 250)= 3780·250:10=94500. Oznacza to, że m 4 = 94 500.

Zatem najmniejsza wspólna wielokrotność pierwotnych czterech liczb wynosi 94 500.

Odpowiedź:

LCM(140, 9, 54, 250) = 94 500.

W wielu przypadkach wygodnie jest znaleźć najmniejszą wspólną wielokrotność trzech lub więcej liczb, stosując rozkład na czynniki pierwsze podanych liczb. W takim przypadku należy przestrzegać następującej zasady. Najmniejsza wspólna wielokrotność kilku liczb jest równa iloczynowi, który składa się z następującego wzoru: brakujące czynniki z rozwinięcia drugiej liczby dodawane są do wszystkich czynników z rozwinięcia pierwszej liczby, brakujące czynniki z rozwinięcia do otrzymanych czynników dodaje się trzecią liczbę i tak dalej.

Spójrzmy na przykład znajdowania najmniejszej wspólnej wielokrotności przy użyciu rozkładu na czynniki pierwsze.

Przykład.

Znajdź najmniejszą wspólną wielokrotność pięciu liczb 84, 6, 48, 7, 143.

Rozwiązanie.

Najpierw otrzymujemy rozkład tych liczb na czynniki pierwsze: 84=2·2·3·7, 6=2·3, 48=2·2·2·2·3, 7 (7 jest liczbą pierwszą, pokrywa się z rozkładem na czynniki pierwsze) i 143=11·13.

Aby znaleźć LCM tych liczb, do współczynników pierwszej liczby 84 (są to 2, 2, 3 i 7), należy dodać brakujące czynniki z rozwinięcia drugiej liczby 6. Rozkład liczby 6 nie zawiera brakujących czynników, ponieważ zarówno 2, jak i 3 są już obecne w rozkładzie pierwszej liczby 84. Następnie do czynników 2, 2, 3 i 7 dodajemy brakujące czynniki 2 i 2 z rozwinięcia trzeciej liczby 48 i otrzymujemy zbiór czynników 2, 2, 2, 2, 3 i 7. W następnym kroku nie będzie potrzeby dodawania mnożników do tego zestawu, ponieważ 7 jest już w nim zawarte. Na koniec do współczynników 2, 2, 2, 2, 3 i 7 dodajemy brakujące czynniki 11 i 13 z rozwinięcia liczby 143. Otrzymujemy iloczyn 2,2,2,2,3,7,11,13, który jest równy 48,048.

Kontynuujmy rozmowę o najmniejszej wspólnej wielokrotności, którą rozpoczęliśmy w rozdziale „LCM – najmniejsza wspólna wielokrotność, definicja, przykłady”. W tym temacie przyjrzymy się sposobom znalezienia LCM dla trzech lub więcej liczb oraz przyjrzymy się pytaniu, jak znaleźć LCM liczby ujemnej.

Yandex.RTB R-A-339285-1

Obliczanie najmniejszej wspólnej wielokrotności (LCM) za pomocą GCD

Ustaliliśmy już związek między najmniejszą wspólną wielokrotnością a największym wspólnym dzielnikiem. Teraz nauczmy się, jak określić LCM za pomocą GCD. Najpierw zastanówmy się, jak to zrobić dla liczb dodatnich.

Definicja 1

Najmniejszą wspólną wielokrotność można znaleźć poprzez największy wspólny dzielnik, korzystając ze wzoru LCM (a, b) = a · b: GCD (a, b).

Przykład 1

Musisz znaleźć LCM liczb 126 i 70.

Rozwiązanie

Weźmy a = 126, b = 70. Podstawmy wartości do wzoru na obliczenie najmniejszej wspólnej wielokrotności przez największy wspólny dzielnik LCM (a, b) = a · b: GCD (a, b) .

Znajduje gcd liczb 70 i 126. Do tego potrzebujemy algorytmu Euklidesa: 126 = 70 1 + 56, 70 = 56 1 + 14, 56 = 14 4, zatem GCD (126 , 70) = 14 .

Obliczmy LCM: LCD (126, 70) = 126 70: GCD (126, 70) = 126 70: 14 = 630.

Odpowiedź: LCM(126, 70) = 630.

Przykład 2

Znajdź liczbę 68 i 34.

Rozwiązanie

GCD w w tym przypadku Nie jest to trudne, ponieważ 68 dzieli się przez 34. Obliczmy najmniejszą wspólną wielokrotność korzystając ze wzoru: LCM (68, 34) = 68 34: GCD (68, 34) = 68 34: 34 = 68.

Odpowiedź: LCM(68, 34) = 68.

W tym przykładzie zastosowaliśmy regułę znajdowania najmniejszej wspólnej wielokrotności dodatnich liczb całkowitych a i b: jeśli pierwsza liczba jest podzielna przez drugą, LCM tych liczb będzie równy pierwszej liczbie.

Znalezienie LCM poprzez rozłożenie liczb na czynniki pierwsze

Przyjrzyjmy się teraz metodzie wyznaczania LCM, która opiera się na rozłożeniu liczb na czynniki pierwsze.

Definicja 2

Aby znaleźć najmniejszą wspólną wielokrotność, musimy wykonać kilka prostych kroków:

  • tworzymy iloczyn wszystkich czynników pierwszych liczb, dla których musimy znaleźć LCM;
  • wykluczamy wszystkie czynniki pierwsze z ich otrzymanych produktów;
  • iloczyn otrzymany po wyeliminowaniu wspólnych czynników pierwszych będzie równy LCM podanych liczb.

Ta metoda znajdowania najmniejszej wspólnej wielokrotności opiera się na równości LCM (a, b) = a · b: GCD (a, b). Jeśli spojrzysz na wzór, stanie się jasne: iloczyn liczb aib jest równy iloczynowi wszystkich czynników biorących udział w rozkładzie tych dwóch liczb. W tym przypadku gcd dwóch liczb jest równe iloczynowi wszystkich czynników pierwszych, które są jednocześnie obecne w faktoryzacji tych dwóch liczb.

Przykład 3

Mamy dwie liczby 75 i 210. Możemy je rozłożyć na czynniki w następujący sposób: 75 = 3 5 5 I 210 = 2 3 5 7. Jeśli utworzysz iloczyn wszystkich czynników dwóch pierwotnych liczb, otrzymasz: 2 3 3 5 5 5 7.

Jeśli wykluczymy czynniki wspólne dla liczb 3 i 5, otrzymamy iloczyn w następującej postaci: 2 3 5 5 7 = 1050. Ten produkt będzie naszym LCM dla numerów 75 i 210.

Przykład 4

Znajdź LCM liczb 441 I 700 , rozkładając obie liczby na czynniki pierwsze.

Rozwiązanie

Znajdźmy wszystkie czynniki pierwsze liczb podanych w warunku:

441 147 49 7 1 3 3 7 7

700 350 175 35 7 1 2 2 5 5 7

Otrzymujemy dwa łańcuchy liczb: 441 = 3 3 7 7 i 700 = 2 2 5 5 7.

Iloczyn wszystkich czynników biorących udział w rozkładzie tych liczb będzie miał postać: 2 2 3 3 5 5 7 7 7. Znajdźmy wspólne czynniki. To jest liczba 7. Wykluczmy go z tego całkowity produkt: 2 2 3 3 5 5 7 7. Okazuje się, że NOC (441, 700) = 2 2 3 3 5 5 7 7 = 44 100.

Odpowiedź: LOC(441, 700) = 44100.

Podajmy inne sformułowanie metody znajdowania LCM poprzez rozkład liczb na czynniki pierwsze.

Definicja 3

Wcześniej wykluczyliśmy z całkowitej liczby czynników wspólnych dla obu liczb. Teraz zrobimy to inaczej:

  • Rozłóżmy obie liczby na czynniki pierwsze:
  • dodaj do iloczynu czynników pierwszych pierwszej liczby brakujące czynniki drugiej liczby;
  • otrzymujemy iloczyn, który będzie pożądanym LCM dwóch liczb.

Przykład 5

Wróćmy do liczb 75 i 210, dla których szukaliśmy LCM już w jednym z poprzednich przykładów. Podzielmy je na proste czynniki: 75 = 3 5 5 I 210 = 2 3 5 7. Do iloczynu czynników 3, 5 i 5 liczby 75 dodają brakujące czynniki 2 I 7 numery 210. Otrzymujemy: 2 · 3 · 5 · 5 · 7 . To jest LCM liczb 75 i 210.

Przykład 6

Konieczne jest obliczenie LCM liczb 84 i 648.

Rozwiązanie

Rozłóżmy liczby z warunku na proste czynniki: 84 = 2 2 3 7 I 648 = 2 2 2 3 3 3 3. Dodajmy do iloczynu czynniki 2, 2, 3 i 7 liczby 84 brakujące czynniki 2, 3, 3 i
3 numery 648. Otrzymujemy produkt 2 2 2 3 3 3 3 7 = 4536. Jest to najmniejsza wspólna wielokrotność 84 i 648.

Odpowiedź: LCM(84, 648) = 4536.

Znajdowanie LCM trzech lub więcej liczb

Niezależnie od tego z iloma liczbami mamy do czynienia, algorytm naszego działania zawsze będzie taki sam: znajdziemy po kolei LCM dwóch liczb. Istnieje twierdzenie dotyczące tego przypadku.

Twierdzenie 1

Załóżmy, że mamy liczby całkowite a 1 , a 2 , … , a k. NOC m k liczby te można znaleźć, obliczając kolejno m 2 = LCM (a 1, a 2), m 3 = LCM (m 2, a 3), ..., m k = LCM (m k - 1, a k).

Przyjrzyjmy się teraz, jak twierdzenie można zastosować do rozwiązania konkretnych problemów.

Przykład 7

Musisz obliczyć najmniejszą wspólną wielokrotność czterech liczb 140, 9, 54 i 250 .

Rozwiązanie

Wprowadźmy oznaczenie: a 1 = 140, a 2 = 9, a 3 = 54, a 4 = 250.

Zacznijmy od obliczenia m 2 = LCM (a 1 , a 2) = LCM (140, 9). Zastosujmy algorytm Euklidesa do obliczenia NWD liczb 140 i 9: 140 = 9 15 + 5, 9 = 5 1 + 4, 5 = 4 1 + 1, 4 = 1 4. Otrzymujemy: NWD (140, 9) = 1, NWD (140, 9) = 140 · 9: NWD (140, 9) = 140 · 9: 1 = 1260. Dlatego m 2 = 1260.

Obliczmy teraz według tego samego algorytmu m 3 = LCM (m 2 , a 3) = LCM (1 260, 54). Podczas obliczeń otrzymujemy m 3 = 3 780.

Musimy tylko obliczyć m 4 = LCM (m 3 , a 4) = LCM (3 780, 250). Postępujemy według tego samego algorytmu. Otrzymujemy m 4 = 94 500.

LCM czterech liczb z przykładowego warunku wynosi 94500.

Odpowiedź: NOC (140, 9, 54, 250) = 94 500.

Jak widać obliczenia są proste, ale dość pracochłonne. Aby zaoszczędzić czas, możesz wybrać inną drogę.

Definicja 4

Oferujemy następujący algorytm działań:

  • rozkładamy wszystkie liczby na czynniki pierwsze;
  • do iloczynu czynników pierwszej liczby dodajemy brakujące czynniki z iloczynu drugiej liczby;
  • do iloczynu otrzymanego na poprzednim etapie dodajemy brakujące czynniki trzeciej liczby itp.;
  • wynikowy iloczyn będzie najmniejszą wspólną wielokrotnością wszystkich liczb z warunku.

Przykład 8

Musisz znaleźć LCM pięciu liczb 84, 6, 48, 7, 143.

Rozwiązanie

Rozłóżmy wszystkie pięć liczb na czynniki pierwsze: 84 = 2 2 3 7, 6 = 2 3, 48 = 2 2 2 2 3, 7, 143 = 11 13. Liczb pierwszych, czyli liczby 7, nie można rozłożyć na czynniki pierwsze. Liczby takie pokrywają się z ich rozkładem na czynniki pierwsze.

Weźmy teraz iloczyn czynników pierwszych 2, 2, 3 i 7 liczby 84 i dodajmy do nich brakujące czynniki drugiej liczby. Rozłożyliśmy liczbę 6 na 2 i 3. Czynniki te są już w iloczynie pierwszej liczby. Dlatego je pomijamy.

Kontynuujemy dodawanie brakujących mnożników. Przejdźmy do liczby 48, z iloczynu jej czynników pierwszych bierzemy 2 i 2. Następnie dodajemy czynnik pierwszy 7 z czwartej liczby oraz czynniki 11 i 13 z piątej. Otrzymujemy: 2 2 2 2 3 7 11 13 = 48048. Jest to najmniejsza wspólna wielokrotność pierwotnych pięciu liczb.

Odpowiedź: LCM(84, 6, 48, 7, 143) = 48048.

Znajdowanie najmniejszej wspólnej wielokrotności liczb ujemnych

Aby znaleźć najmniejszą wspólną wielokrotność liczb ujemnych, należy najpierw zastąpić te liczby liczbami o przeciwnym znaku, a następnie przeprowadzić obliczenia z wykorzystaniem powyższych algorytmów.

Przykład 9

LCM (54, - 34) = LCM (54, 34) i LCM (- 622, - 46, - 54, - 888) = LCM (622, 46, 54, 888).

Takie działania są dopuszczalne ze względu na to, że jeśli to zaakceptujemy A I - za– liczby przeciwne,
następnie zbiór wielokrotności liczby A dopasowuje zbiór wielokrotności liczby - za.

Przykład 10

Konieczne jest obliczenie LCM liczb ujemnych − 145 I − 45 .

Rozwiązanie

Zamieńmy liczby − 145 I − 45 do ich przeciwnych liczb 145 I 45 . Teraz korzystając z algorytmu obliczamy LCM (145, 45) = 145 · 45: GCD (145, 45) = 145 · 45: 5 = 1,305, wyznaczywszy wcześniej GCD za pomocą algorytmu Euklidesa.

Otrzymujemy, że LCM liczb wynosi - 145 i − 45 równa się 1 305 .

Odpowiedź: LCM (- 145, - 45) = 1305.

Jeśli zauważysz błąd w tekście, zaznacz go i naciśnij Ctrl+Enter

Aby zrozumieć, jak obliczyć LCM, należy najpierw określić znaczenie terminu „wielokrotność”.


Wielokrotność A jest liczbą naturalną, która dzieli się przez A bez reszty. Zatem liczby będące wielokrotnością 5 można uznać za 15, 20, 25 i tak dalej.


Mogą istnieć dzielniki określonej liczby ograniczona ilość, ale istnieje nieskończona liczba wielokrotności.


Wspólna wielokrotność liczb naturalnych to liczba, którą można przez nie podzielić bez pozostawiania reszty.

Jak znaleźć najmniejszą wspólną wielokrotność liczb

Najmniejsza wspólna wielokrotność (LCM) liczb (dwa, trzy lub więcej) to najmniejsza liczba naturalna, która dzieli się przez wszystkie te liczby.


Aby znaleźć LOC, możesz skorzystać z kilku metod.


W przypadku małych liczb wygodnie jest zapisać wszystkie wielokrotności tych liczb w jednym wierszu, aż znajdziesz wśród nich coś wspólnego. Wielokrotności oznacza się wielką literą K.


Na przykład wielokrotności liczby 4 można zapisać w następujący sposób:


K. (4) = (8,12, 16, 20, 24, ...)


K. (6) = (12, 18, 24, ...)


Zatem widać, że najmniejszą wspólną wielokrotnością liczb 4 i 6 jest liczba 24. Zapis ten wykonuje się w następujący sposób:


LCM(4, 6) = 24


Jeśli liczby są duże, znajdź wspólną wielokrotność trzech lub więcej liczb, wtedy lepiej zastosować inną metodę obliczenia LCM.


Aby wykonać zadanie, należy rozłożyć podane liczby na czynniki pierwsze.


Najpierw musisz zapisać rozkład największej liczby na linii, a poniżej - resztę.


Rozkład każdej liczby może obejmować inną liczbę czynników.


Na przykład, rozłóżmy liczby 50 i 20 na czynniki pierwsze.




W rozwinięciu mniejszej liczby należy podkreślić czynniki, których nie ma w rozwinięciu pierwszej. duża liczba, a następnie dodaj je do niego. W przedstawionym przykładzie brakuje dwójki.


Teraz możesz obliczyć najmniejszą wspólną wielokrotność 20 i 50.


LCM(20, 50) = 2 * 5 * 5 * 2 = 100


Zatem iloczyn czynników pierwszych więcej a czynniki drugiej liczby, które nie zostały uwzględnione w rozwinięciu większej liczby, będą najmniejszą wspólną wielokrotnością.


Aby znaleźć LCM trzech lub więcej liczb, należy je wszystkie rozłożyć na czynniki pierwsze, tak jak w poprzednim przypadku.


Jako przykład możesz znaleźć najmniejszą wspólną wielokrotność liczb 16, 24, 36.


36 = 2 * 2 * 3 * 3


24 = 2 * 2 * 2 * 3


16 = 2 * 2 * 2 * 2


Zatem tylko dwie dwójki z rozwinięcia szesnastu nie zostały uwzględnione w faktoryzacji większej liczby (jedna jest w rozwinięciu dwudziestu czterech).


Należy je zatem dodać do rozwinięcia większej liczby.


LCM(12, 16, 36) = 2 * 2 * 3 * 3 * 2 * 2 = 9


Istnieją szczególne przypadki wyznaczania najmniejszej wspólnej wielokrotności. Jeśli więc jedną z liczb można podzielić bez reszty przez inną, wówczas większa z tych liczb będzie najmniejszą wspólną wielokrotnością.


Na przykład LCM wynoszący dwanaście i dwadzieścia cztery to dwadzieścia cztery.


Jeśli konieczne jest znalezienie najmniejszej wspólnej wielokrotności liczb względnie pierwszych, które nie mają identycznych dzielników, wówczas ich LCM będzie równa ich iloczynowi.


Na przykład LCM (10, 11) = 110.

Drugi numer: b=

Separator tysięcy Bez separatora spacji „”.

Wynik:

Największy wspólny dzielnik gcd( A,B)=6

Najmniejsza wspólna wielokrotność LCM ( A,B)=468

Nazywa się największą liczbę naturalną, którą można podzielić bez reszty przez liczby a i b największy wspólny dzielnik(GCD) tych liczb. Oznaczone przez gcd(a,b), (a,b), gcd(a,b) lub hcf(a,b).

Najmniejsza wspólna wielokrotność LCM dwóch liczb całkowitych aib jest najmniejszą liczbą naturalną, która dzieli się przez aib bez reszty. Oznaczone jako LCM(a,b) lub lcm(a,b).

Nazywa się liczby całkowite a i b wzajemnie pierwsze, jeśli nie mają wspólnych dzielników innych niż +1 i -1.

Największy wspólny dzielnik

Niech zostaną podane dwie liczby dodatnie A 1 i A 2 1). Konieczne jest znalezienie wspólnego dzielnika tych liczb, tj. znajdź taką liczbę λ , który dzieli liczby A 1 i A 2 jednocześnie. Opiszmy algorytm.

1) W tym artykule liczba słów będzie rozumiana jako liczba całkowita.

Pozwalać A 1 ≥ A 2 i niech

Gdzie M 1 , A 3 to niektóre liczby całkowite, A 3 <A 2 (reszta z dzielenia A 1 os A 2 powinno być mniej A 2).

Załóżmy, że λ dzieli A 1 i A 2 wtedy λ dzieli M 1 A 2 i λ dzieli A 1 −M 1 A 2 =A 3 (Stwierdzenie 2 artykułu „Podzielność liczb. Test na podzielność”). Wynika z tego, że każdy wspólny dzielnik A 1 i A 2 jest wspólnym dzielnikiem A 2 i A 3. Odwrotna sytuacja jest również prawdą, jeśli λ wspólny dzielnik A 2 i A 3 wtedy M 1 A 2 i A 1 =M 1 A 2 +A 3 jest również podzielne przez λ . Dlatego wspólny dzielnik A 2 i A 3 jest także wspólnym dzielnikiem A 1 i A 2. Ponieważ A 3 <A 2 ≤A 1, to możemy powiedzieć, że jest to rozwiązanie problemu znalezienia wspólnego dzielnika liczb A 1 i A 2 zredukowano do prostszego problemu znalezienia wspólnego dzielnika liczb A 2 i A 3 .

Jeśli A 3 ≠0, to możemy dzielić A 2 włączone A 3. Następnie

,

Gdzie M 1 i A 4 to niektóre liczby całkowite, ( A 4 pozostałe z dzielenia A 2 włączone A 3 (A 4 <A 3)). Z podobnego rozumowania dochodzimy do wniosku, że wspólne dzielniki liczb A 3 i A 4 pokrywa się ze wspólnymi dzielnikami liczb A 2 i A 3, a także ze wspólnymi dzielnikami A 1 i A 2. Ponieważ A 1 , A 2 , A 3 , A 4, ... to liczby, które stale maleją, a pomiędzy nimi jest skończona liczba liczb całkowitych A 2 i 0, a potem w pewnym momencie N, reszta z dzielenia A n A n+1 będzie równe zero ( A n+2 =0).

.

Każdy wspólny dzielnik λ takty muzyczne A 1 i A 2 jest także dzielnikiem liczb A 2 i A 3 , A 3 i A 4 , .... A n i A n+1 . Odwrotna sytuacja jest również prawdą, wspólne dzielniki liczb A n i A n+1 są także dzielnikami liczb A n-1 i A N , .... , A 2 i A 3 , A 1 i A 2. Ale wspólny dzielnik liczb A n i A n+1 to liczba A n+1 , ponieważ A n i A n+1 jest podzielne przez A n+1 (pamiętaj o tym A n+2 =0). Stąd A n+1 jest także dzielnikiem liczb A 1 i A 2 .

Należy pamiętać, że liczba A n+1 to największy dzielnik liczb A n i A n+1 , od największego dzielnika A n+1 jest sobą A n+1 . Jeśli A n+1 można przedstawić jako iloczyn liczb całkowitych, wówczas liczby te są również wspólnymi dzielnikami liczb A 1 i A 2. Numer A nazywa się n+1 największy wspólny dzielnik takty muzyczne A 1 i A 2 .

Takty muzyczne A 1 i A 2 może być liczbą dodatnią lub ujemną. Jeżeli jedna z liczb jest równa zero, to największy wspólny dzielnik tych liczb będzie równy wartości bezwzględnej drugiej liczby. Największy wspólny dzielnik liczb zerowych jest nieokreślony.

Powyższy algorytm nazywa się Algorytm euklidesowy znaleźć największy wspólny dzielnik dwóch liczb całkowitych.

Przykład znalezienia największego wspólnego dzielnika dwóch liczb

Znajdź największy wspólny dzielnik dwóch liczb 630 i 434.

  • Krok 1. Podziel liczbę 630 przez 434. Reszta to 196.
  • Krok 2. Podziel liczbę 434 przez 196. Reszta to 42.
  • Krok 3. Podziel liczbę 196 przez 42. Reszta to 28.
  • Krok 4. Podziel liczbę 42 przez 28. Reszta to 14.
  • Krok 5. Podziel liczbę 28 przez 14. Reszta to 0.

W kroku 5 reszta dzielenia wynosi 0. Zatem największym wspólnym dzielnikiem liczb 630 i 434 jest 14. Zauważ, że liczby 2 i 7 są również dzielnikami liczb 630 i 434.

Liczby względnie pierwsze

Definicja 1. Niech największy wspólny dzielnik liczb A 1 i A 2 równa się jeden. Następnie te liczby są wywoływane liczby względnie pierwsze, nie mający wspólnego dzielnika.

Twierdzenie 1. Jeśli A 1 i A 2 liczby względnie pierwsze i λ pewna liczba, a następnie dowolny wspólny dzielnik liczb λa 1 i A 2 jest także wspólnym dzielnikiem liczb λ I A 2 .

Dowód. Rozważmy algorytm Euklidesa służący do znajdowania największego wspólnego dzielnika liczb A 1 i A 2 (patrz wyżej).

.

Z warunków twierdzenia wynika, że ​​największy wspólny dzielnik liczb A 1 i A 2 i dlatego A n i A n+1 równa się 1. To znaczy A n+1 =1.

Pomnóżmy wszystkie te równości przez λ , Następnie

.

Niech wspólny dzielnik A 1 λ I A 2 tak δ . Następnie δ jest uwzględniany jako mnożnik w A 1 λ , M 1 A 2 λ i w A 1 λ -M 1 A 2 λ =A 3 λ (patrz „Podzielność liczb”, stwierdzenie 2). Następny δ jest uwzględniany jako mnożnik w A 2 λ I M 2 A 3 λ , i dlatego jest uwzględniany jako czynnik w A 2 λ -M 2 A 3 λ =A 4 λ .

Rozumując w ten sposób, jesteśmy o tym przekonani δ jest uwzględniany jako mnożnik w A n-1 λ I M n-1 A N λ , a zatem w A n-1 λ M n-1 A N λ =A n+1 λ . Ponieważ A n+1 =1, zatem δ jest uwzględniany jako mnożnik w λ . Dlatego liczba δ jest wspólnym dzielnikiem liczb λ I A 2 .

Rozważmy szczególne przypadki twierdzenia 1.

Konsekwencja 1. Pozwalać A I C Liczby pierwsze są względne B. Potem ich produkt AC jest liczbą pierwszą względem B.

Naprawdę. Z twierdzenia 1 AC I B mają takie same wspólne dzielniki jak C I B. Ale liczby C I B stosunkowo proste, tj. mają jeden wspólny dzielnik 1. Następnie AC I B mają również jeden wspólny dzielnik 1. Dlatego AC I B wzajemnie proste.

Konsekwencja 2. Pozwalać A I B liczby względnie pierwsze i niech B dzieli ok. Następnie B dzieli i k.

Naprawdę. Od warunku zatwierdzenia ok I B mają wspólny dzielnik B. Na mocy Twierdzenia 1, B musi być wspólnym dzielnikiem B I k. Stąd B dzieli k.

Wniosek 1 można uogólnić.

Konsekwencja 3. 1. Niech liczby A 1 , A 2 , A 3 , ..., A m są liczbą pierwszą w stosunku do liczby B. Następnie A 1 A 2 , A 1 A 2 · A 3 , ..., A 1 A 2 A 3 ··· A m, iloczyn tych liczb jest liczbą pierwszą B.

2. Miejmy dwa rzędy liczb

tak, że każda liczba z pierwszego szeregu jest liczbą pierwszą w stosunku do każdej liczby z drugiego szeregu. Następnie produkt

Musisz znaleźć liczby podzielne przez każdą z tych liczb.

Jeśli liczba jest podzielna przez A 1, to ma postać sa 1 gdzie S jakiś numer. Jeśli Q jest największym wspólnym dzielnikiem liczb A 1 i A 2, zatem

Gdzie S 1 to pewna liczba całkowita. Następnie

Jest najmniejsza wspólna wielokrotność liczb A 1 i A 2 .

A 1 i A 2 są względnie pierwsze, to najmniejsza wspólna wielokrotność liczb A 1 i A 2:

Musimy znaleźć najmniejszą wspólną wielokrotność tych liczb.

Z powyższego wynika, że ​​dowolna wielokrotność liczb A 1 , A 2 , A 3 musi być wielokrotnością liczb ε I A 3 i z powrotem. Niech najmniejsza wspólna wielokrotność liczb ε I A 3 tak ε 1. Następnie wielokrotności liczb A 1 , A 2 , A 3 , A Liczba 4 musi być wielokrotnością liczb ε 1 i A 4. Niech najmniejsza wspólna wielokrotność liczb ε 1 i A 4 tak ε 2. W ten sposób dowiedzieliśmy się, że wszystkie wielokrotności liczb A 1 , A 2 , A 3 ,...,A m pokrywają się z wielokrotnościami pewnej liczby ε n, co nazywa się najmniejszą wspólną wielokrotnością danych liczb.

W szczególnym przypadku, gdy liczby A 1 , A 2 , A 3 ,...,A m są względnie pierwsze, to najmniejsza wspólna wielokrotność liczb A 1 , A 2, jak pokazano powyżej, ma postać (3). Następny, od A 3 liczby pierwsze w odniesieniu do liczb A 1 , A 2 wtedy A 3 liczba pierwsza A 1 · A 2 (wniosek 1). Oznacza najmniejszą wspólną wielokrotność liczb A 1 ,A 2 ,A 3 to liczba A 1 · A 2 · A 3. Rozumując w podobny sposób, dochodzimy do następujących stwierdzeń.

Oświadczenie 1. Najmniejsza wspólna wielokrotność liczb względnie pierwszych A 1 , A 2 , A 3 ,...,A m jest równe ich iloczynowi A 1 · A 2 · A 3 ··· A M.

Oświadczenie 2. Dowolna liczba, która jest podzielna przez każdą z liczb stosunkowo pierwszych A 1 , A 2 , A 3 ,...,A m jest również podzielne przez ich iloczyn A 1 · A 2 · A 3 ··· A M.