Санитарно-химические показатели загрязнения сточных вод. Химические показатели загрязнения воды

Источниками загрязнений вод могут быть атмосферные осадки, с которыми поступают различные загрязнители антропогенного характера из воздуха и почв; городские сточные воды, в основном хозяйственно-бытовые (коммунальные), содержащие фекалии, детергенты (моющие средства), патогенные микроорганизмы; промышленные сточные воды различных отраслей производства.

Наиболее стойкие загрязнители - нефтяные масла . Опасны загрязнители целлюлозно-бумажной, химической, текстильной, металлургической, горнорудной, пищевой промышленности; заводов по очистке урановой руды и переработке ядерного топлива для реакторов, атомных электростанций. Источником загрязнения является и сельское хозяйство в связи с применением пестицидов, удобрений; в связи с образованием животноводческих стоков, богатых мочевиной (они могут поступать в водоемы с сельскохозяйственных угодий с ливневыми водами).

Обычно различают биологическое (органическое), химическое и физическое (тепловое) загрязнения вод.

Биологическое загрязнение – стоки, содержащие фекалии, мочу, пищевые отходы, стоки боен, пивоваренных, молочных и сахарных заводов, сыроварен, отходы целлюлозно-бумажной промышленности, кожевенных производств и др. Такие воды являются бактериологически зараженными и могут вызывать заболевания: дизентерию, кишечные инфекции, тиф и другие.

Химическое загрязнение вод вызывают сточные воды предприятий, содержащие в токсичных количествах соли свинца, меди, никеля, цинка, кадмия, бериллия, нитраты и нитриты, сульфаты и сульфиды, персульфаты, нефтепродукты, фенолы, пестициды и другие химические соединения, которые нарушают процессы фотосинтеза, обусловливают непригодность воды для рыбного хозяйства, рекреационных целей и хозяйственно-питьевого назначения.

Тепловое загрязнение исходит от тепловых электростанций. Сброс нагретых вод в природные водоемы вызывает повышение температуры воды, замену обычной флоры сине-зелеными водорослями, выделяющими при разложении токсические вещества. Такая вода непригодна для питья, рыбного хозяйства, часто и для промышленности, так как возможны нарушение технологических процессов, коррозия металлических конструкций.

Токсические вещества, содержащиеся в водах, весьма опасны для человека, так как активно накапливаются в пищевых цепях.

Так, углеводороды, ароматические амины, нитросоединения, попадая в организм человека, могут вызвать раковые заболевания. Бывают случаи отравления рыбой, содержащей соединения ртути.

Загрязнение воды отрицательно действует на биосферу. Вредные вещества из загрязненной воды воздействуют на кожный покров организма, слизистую оболочку и могут поступать в организм с пищей. Наибольшей вред биосфере наносят примеси в воде химических веществ. Даже небольшое увеличение концентрации некоторых загрязнений наносит существенный вред живым организмам. Наибольший вред наносят следующие загрязнения воды:

· Тяжелые металлы: свинец, кадмий, хром, ртуть, бериллий и др. Кадмий вызывает заболевание костей. Хром поражает кожу (отеки, экзе­ма). Ртуть вызывает хроническое отравление, нарушения в центральной нервной системе. Бериллий является ядом общетоксичного действия с высокой степенью кумуляции, поражающим центральную нервную систему.

· Химические вещества: цианиды, мышьяк, фтор, бор и др. Так, концентрация фтора свыше 1,5 мг/л вызывает флюороз, поражающий кости человека.

· Пестициды, используемые при обработке сельскохозяйственных угодий. Их вредные действия на биосферу зависят от вида продукта и формы его применения.

· Бактериальные загрязнения воды возбудителями инфекционных заболеваний приводят к эпидемиям (холера, брюшной тиф, сибирская язва, дизентерия и др.).

· Синтетические поверхностно-активные вещества (СПАВ), нарушающие аэрацию воды и процесс самоочищения, стимулируют размножение опасных микроорганизмов.

Указанные загрязнения приводят к заболеванию животных и растений. И прежде всего пагубно действуют на жизнь водных организмов уменьшение кислорода в воде вследствие загрязнения нефтепродуктами, а также тепловое загрязнение водоемов. Последнее нарушает термический и биологический режим водоемов.

Качество воды характеризуется ее физическими, химическими и бактериологическими свойствами.

К физическим свойствам относятся: ее температура, цветность, мутность, привкус и запах. Температура воды из колодцев должна быть 7-12°С. Вода, имеющая более высокую температуру, теряет свои освежающие свойства. Температура ниже 5° С считается вредной для здоровья людей и приводит к простудным заболеваниям.

Под цветностью понимают ее окраску и выражают в градусах по платиново-кобальтовой шкале.

Мутность определяется содержанием в воде взвешенных частиц и выражается в миллиграммах на литр (мг/л). Вода подземных источников имеет малую мутность.

Наличие в воде органических веществ резко ухудшает ее физические (органолептические) показатели, вызывая различного рода запахи (землистый, гнилостный, рыбный, болотный, аптечный, камфорный, запах нефтепродуктов, хлорфенольный и т.д.), повышает цветность, вспениваемость, оказывает неблагоприятное действие на человека и животных.

Установлено, что незначительные изменения физических свойств воды снижают секрецию желудочного сока, а приятные вкусовые ощущения повышают остроту зрения и частоту сокращений сердца (неприятные - снижают).

Химические свойства воды характеризуются следующими показателями: активной реакцией, жесткостью, окисляемостью, содержанием растворенных солей.

Активная реакция воды определяется концентрацией водородных ионов. Обычно она выражается через pH. При pH=7 среда нейтральная; при pH<7 среда кислая, при pH>7 среда щелочная.

Жесткость воды определяется содержанием в ней солей кальция и магния. Она выражается в миллиграмм-эквивалентах на литр (мг·экв/л). Вода подземных источников имеет большую жесткость, а вода поверхностных источников - относительно невысокую (3-6 мг·экв/л).

Жесткая вода содержит много минеральных солей, от которых на стенках посуды, котлах и других агрегатах образуется накипь - каменная соль. Жесткая вода губительна и непригодна для систем водоснабжения. В такой воде плохо заваривается чай, плохо растворяется мыло, почти не развариваются овощи, особенно бобовые.

Мягкая вода должна иметь жесткость не более 10 мг·экв/л.

В последние годы высказано предположение, что вода с низким содержанием солей жесткости способствует развитию сердечно-сосудистых заболеваний.

Окисляемость обуславливается содержанием в воде растворенных органических веществ и может служить показателем загрязненности источника сточными водами. Для колодцев особую опасность представляют сточные воды, в составе которых есть белки, жиры, углеводы, органические кислоты, эфиры, спирты, фенолы, нефть и др.

Содержание в воде растворенных солей (мг/л) характеризуется плотным (сухим) осадком. Вода поверхностных источников имеет меньший плотный осадок, чем вода подземных источников, т.е. содержит меньше растворенных солей. Предел минерализации питьевой воды (сухого остатка) 1000 мг/л был в свое время установлен по органолептическому признаку. Воды с большим содержанием солей имеют солоноватый или горьковатый привкус. Допускается содержание их в воде на уровне порога ощущения: 350 мг/л для хлоридов и 500 мг/л для сульфатов. Нижним пределом минерализации, при котором гомеостаз организма поддерживается адаптивными реакциями, является сухой остаток в 100 мг/л, оптимальный уровень минерализации 200-400 мг/л. При этом минимальное содержание кальция должно быть не менее 25 мг/л, магния -10 мг/л.

Степень бактериологической загрязненности воды определяется числом бактерий, содержащихся в 1 куб.см воды и должна быть не более 100. Вода поверхностных источников содержит бактерии, внесенные сточными и дождевыми водами, животными и т.д. Вода подземных артезианских источников обычно не загрязнена бактериями.

Различают патогенные (болезнетворные) и сапрофитные бактерии. Для оценки загрязненности воды патогенными бактериями определяют содержание в ней кишечной палочки. Бактериальное загрязнение измеряют коли-титром и коли-индексом. Коли-титр – объем воды, в котором содержится одна кишечная палочка, должен составлять не менее 300. Коли-индекс – число кишечных палочек, содержащихся в 1 л воды, не должен быть выше 3.

  • Геохимия природных и техногенных ландшафтов
    • ДИДАКТИЧЕСКИЙ ПЛАН
    • ЛИТЕРАТУРА
    • Оценка загрязненности воды
    • Биохимическое и химическое потребление кислорода
    • Аналитическое определение БПК и ХПК
    • Неорганические вещества в воде. Ионы, поступающие из удобрений и солей, используемых для снеготаяния и борьбы со льдом. Кислотные выбросы. Ионы тяжелых металлов. Основные химические реакции в гидросфере
    • Методы очистки воды: физические, химические и биологические. Основные принципы и аппаратное оформление. Очистка питьевой воды: процессы водоподготовки и химические реакции, лежащие в их основе. Стандарты на воду
    • Загрязнение почвы. Химические последствия кислотных загрязнений
    • Роль металлов в живой природе
    • Необходимость и токсичность ионов металлов
    • Взаимосвязь между необходимостью и токсичностью металлов в экосистемах
    • Потенциально опасные следы металлов в атмосфере, гидросфере и литосфере
    • Глобальный перенос следовых количеств потенциально опасных металлов
    • Микроэлементы. Поступление и усвоение металлов в организме
    • Молекулярные основы токсичности металлов. Ряды токсичности
    • Факторы окружающей среды, влияющие на токсичность
    • Толерантность организмов к металлам. Канцерогенность ионов металлов. Пути воздействия металлов на организм
    • Ионы тяжелых металлов в природных водах. Формы существования металлов в водных экосистемах, зависимость токсичности от формы. Вторичная токсичность вод
    • Строение атмосферы
    • Распределение температуры, давления и других параметров по высоте
    • Причины образования характерных слоев в атмосфере (барометрическая формула, конвекция, космическое излучение). Значение слоев для человека
    • Ионосфера
    • Изменение химического состава по высоте (несоответствие барометрической формуле)
    • Рассмотрение атмосферы как системы (открытая, замкнутая, изолированная). Термодинамический подход (N2O). Грозы
    • Кинетический подход
    • Основные химические реакции в атмосфере и тропосфере
    • Элементы химической кинетики (порядок реакции, молекулярность, зависимость скорости от давления)
    • Озоновый слой
    • Разрушающее действие галогенов, фреонов и т.д.
    • Характерный химический состав выбросов в атмосферу
    • Химические превращения загрязнений
    • Возможность самоочищения атмосферы
    • Границы биосферы, состав и масса живого вещества
    • Кларки и геохимические функции живого вещества, биогеохимические процессы как геологический фактор
    • Органическое вещество, процессы синтеза и разложения

ПРЯМОЙ ЦИКЛ РАЗЛОЖЕНИЯ АЗОТСОДЕРЖАЩИХ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

представлен неразложившимися веществами белковой природы, нередко животного происхождения, а также азотом, входящим в состав микроорганизмов, низких растений и неразложившихся остатков высших растений.

Вначале разложения образуется аммиак, затем под действием нитрифицирующих бактерий в присутствии достаточного количества кислорода аммиак окисляется до азотистой кислоты (NО 2 -) (нитриты) и далее ферменты другого микробного семейства окисляют азотистую кислоту в азотную (NО 3 -) (нитраты ).

При свежем загрязнении отбросами в воде вырастает содержание АММОНИЙНЫХ СОЛЕЙ , то есть ион аммония является 1. Индикатором недавнего загрязнения воды органическими веществами белковой природы. 2. Ион аммония может быть обнаружен в чистых водах, содержащих гумусовые вещества и в водах глубокого грунтового происхождения.

Обнаружение в воде НИТРИТОВ свидетельствует о недавнем загрязнении водоисточника органикой (содержание в воде нитритов должно быть не более 0,002 мг/л).

НИТРАТЫ - это конечный продукт окисления аммонийных соединений, наличие в воде при отсутствии ионов аммония и нитритов указывает на давнее загрязнение водоисточника. Содержание нитратов в воде шахтных колодцев должно быть 10 мг/л в питьевой воде централизованного водоснабжения до 45 мг/л).

Обнаружение в воде одновременного присутствия солей аммонийных, нитритов и нитратов свидетельствует о постоянном и длительном органическом загрязнении воды.

ХЛОРИДЫ - имеют исключительно широкое распространение в природе и встречаются во всех природных водах. Большое их количество в воде делает ее непригодной для питья из-за соленого вкуса. Кроме того, хлориды могут служить показателем возможного загрязнения водоисточника сточными водами, поэтому хлориды как санитарно-показательные вещества могут иметь значение в том случае, если анализы на их содержание проводятся неоднократно, на протяжении более или менее длительного времени. (ГОСТ "Вода питьевая не >> 350 мг/л).

СУЛЬФАТЫ - также являются важными показателями органического загрязнения воды, так как они всегда содержатся в хозяйственно бытовых сточных водах. (ГОСТ "Вода питьевая" не >> 500 мг/л).

ОКИСЛЯЕМОСТЬ - это количество кислорода в мг, расходуемого на окисление органических веществ, содержащихся в 1 литре воды.

РАСТВОРЕННЫЙ КИСЛОРОД

Подземные воды вследствие отсутствия соприкосновения с воздухом очень часто не содержат кислород. Степень насыщения поверхностных вод сильно колеблется. Вода считается чистой, если в ней содержится 90% кислорода от максимально возможного содержания при данной температуре, Средней чистоты - при 75-80%; Сомнительной - при 50-75%; Загрязненной - менее 50%.

Согласно "Правилам охраны поверхностных вод от загрязнений", содержание кислорода в воде в любой период года должно быть не менее 4 мг/л в пробе, отобранной до 12 часов дня.

Вследствие значительных колебаний абсолютного содержания кислорода в природных водах более ценным показателем является величина потребления кислорода в течение некоторого срока хранения воды при определенной температуре (БИОХИМИЧЕСКАЯ ПОТРЕБНОСТЬ В КИСЛОРОДЕ в течение 5 или 20 суток - БПК 5 - БПК 20).

Для его определения исследуемую воду путем энергичного встряхивания насыщают кислородом воздуха, определяют в ней исходное содержание кислорода и оставляют на 5 или 20 суток при температуре 20 0 С. После этого вновь определяют содержание кислорода. Чаще всего показатель БПК 5 используется для характеристики процессов самоочищения водоемов от загрязнения промышленными и хозяйственно-бытовыми сточными водами.

ОСНОВНЫЕ ИСТОЧНИКИ ЗАГРЯЗНЕНИЯ ВОДОЕМОВ, ПОСЛЕДСТВИЯ ЗАГРЯЗНЕНИЯ ВОДОЕМОВ

Основными источниками загрязнения водоемов являются:

1. промышленные и бытовые сточные воды (бытовые воды имеют высокую бактериальную и органическую загрязненность)

2. дренажные воды с орошаемых земель

3. сточные воды животноводческих комплексов (могут содержать патогенные бактерии и яйца гельминтов)

4. организованный (ливневая канализация) и неорганизованные поверхностный сток с территории населенных пунктов, с/х полей (использование различных химических препаратов - минеральных удобрений, пестицидов и т.д.)

5. молевой сплав леса;

6. водный транспорт (сточные воды 3-х видов: фекальные, хозяйственно-бытовые и воды, получаемые в машинных отделениях).

Кроме того, дополнительными источника заражения воды возбудителями кишечных инфекций могут стать: сточные воды больниц; массовые купания; стирка белья в небольшом водоеме.

Загрязнения, поступающие в водоемы:

1. нарушают нормальные условия жизнедеятельности биоценоза водоема;

2. способствуют изменению органолептических показателей воды (цветность, привкус, запах, прозрачность);

3. повышают бактериальную загрязненность водоемов. Употребление человеком воды, не подвергшейся методам очистки и обеззараживания, приводит к развитию: инфекционных заболеваний, а именно бактериальных, дизентерии, холеры, вирусных (вирусных гепатит), зоонозам (лептоспироз, туляремия), гельминтозам, а так же заражение человека простейшими (амеба, инфузория туфелька);

4. увеличивают количество химических веществ, превышение ПДК которых в питьевой воде способствует развитию хронических заболеваний (например, накопление в организме свинца, бериллия)

Поэтому к качеству питьевой воды предъявляют следующие гигиенические требования:

1. Вода должна быть эпидемиологически безопасной в отношении острых инфекционных заболеваний;

2. должна быть безвредной по химическому составу;

3. вода должна иметь благоприятные органолептические показатели должна быть приятной на вкус, не должна вызывать эстетическое неприятие.

Для снижения заболеваемости человека, связанной с водным фактором передачи необходимо:

выполнение природоохранного комплекса мероприятий (предприятия источники загрязнений) и контроль над его выполнением (контролирующие органы министерства природного хозяйства, ФС «Роспотребнадзор»);

применение методов улучшения качества питьевой воды (водоканал);

Технологии очистки

Направления деятельности

Применяемое оборудование

Задать вопрос специалисту

Традиционно показатели качества воды подразделяют на физические (температура, цветность, вкус, запах, мутность и т.д.), химические (водородный показатель воды pH, щелочность, жесткость, окисляемость, общая минерализация (сухой остаток) и т.д.) и санитарно-бактериологические (общая бактериальная загрязненность воды, коли-индекс, содержание в воде токсичных и радиоактивных компонентов и др.).

Для определения, насколько вода соответствует требуемым нормам, документально устанавливаются численные значения показателей качества воды, с которыми производится сравнение измеренных показателей.

Нормативно-техническая литература, составляющая водно-санитарное законодательство, предъявляет конкретные требования к качеству воды - в зависимости от ее назначения. К таким документам относятся ГОСТ 2874-82 «Вода питьевая», СанПиН 2.1.4.559-96 «Питьевая вода», «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения», СанПиН 2.1.4.1116-02 «Питьевая вода. Гигиенические требования к качеству воды, расфасованной в емкости. Контроль качества», СанПиН 2.1.4.1175-02 «Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников».

Согласно требованиям СанПин питьевая вода должна быть безвредной по своему химическому составу, безопасной в радиационном и эпидемиологическом отношении, а также обладать приятным вкусом и запахом. Поэтому для сохранения собственного здоровья так важно знать, что за воду вы пьете. Для этого ее надо сдать на анализ – проверить, насколько вода соответствует требованиям санитарных норм и правил.

Рассмотрим подробно параметры, по которым оценивается качество воды.

Физические показатели качества воды

Температура воды поверхностных источников определяется температурой воздуха, его влажностью, скоростью и характером движения воды (а также рядом других факторов). В зависимости от времени года она может претерпевать значительные изменения (от 0,1 до 30º С). Для подземных источников температура воды отличается большей стабильностью (8-12 º С).

Оптимальная температура воды для питьевых целей составляет 7-11 ºС.

Стоит отметить, что этот параметр воды имеет большое значение для некоторых производств (например, для систем охлаждения и конденсации пара).

Мутность – показатель содержания в воде различных взвешенных веществ (минерального происхождения – частиц глины, песка, ила; неорганического происхождения – карбонатов различных металлов, гидроокиси железа; органического происхождения - планктона, водорослей и др.). Попадание взвешенных веществ в воду происходит вследствие размыва берегов и дна реки, поступления их с талыми, дождевыми и сточными водами.

Подземные источники имеют, как правило, небольшую мутность воды за счет наличия в ней взвеси гидрооксида железа. Для поверхностных вод мутность чаще обуславливается присутствием зоо- и фитопланктона, илистых или глинистых частиц; ее величина колеблется в течение года.

Мутность воды обычно выражается в миллиграммах на литр (мг/л); ее величина для питьевой воды по нормам СанПиН 2.1.4.559-96 не должна превышать 1,5 мг/л. Для ряда производств пищевой, медицинской, химической, электронной промышленности используется вода такого же или более высокого качества. В то же время во многих производственных процессах допустимо использование воды с повышенным содержанием взвешенных веществ.

Цветность воды - показатель, характеризующий интенсивность окраски воды. Он измеряется в градусах по платиново-кобальтовой шкале, при этом исследуемая проба воды сравнивается по окраске с эталонными растворами. Цветность воды обуславливается присутствием в ней примесей как органической, так и неорганической природы. Сильно влияет на эту характеристику наличие в воде вымываемых из почвы органических веществ (гуминовых и фульвовых кислот, в основном); железа и других металлов; техногенных загрязнений из промышленных сточных вод. Требование СанПиН 2.1.4.559-96 – цветность питьевой воды должна быть не более 20º. Отдельные виды промышленности ужесточают требования к величине цветности воды.

Запах и привкус воды – эта характеристика определяется органолептически (с помощью органов чувств), поэтому она достаточно субъективна.

Запахи и привкус, которыми может обладать вода, появляются за счет присутствия в ней растворенных газов, органических веществ, минеральных солей, химических техногенных загрязнений. Интенсивность запахов и привкусов определяются по пятибалльной шкале или по «порогу разбавления» испытуемой пробы воды дистиллированной водой. При этом устанавливается кратность разбавления, необходимая для исчезновения запаха или привкуса. Определение запаха и вкуса происходит с помощью непосредственного дегустирования при комнатной температуре, а также при температуре 60º С, вызывающей их усиление. Питьевая вода при 60º С не должна иметь привкус и запах более 2-х баллов (требования ГОСТ 2874-82).

В соответствии с 5-ти бальной шкалой: при 0 баллов - запах и привкус не обнаруживается;

при 1 балле вода имеет очень слабые запах или привкус, обнаруживаемые только опытным исследователем;

при 2-х баллах имеются слабые запах или привкус, очевидные и для неспециалиста;

при 3-х баллах легко обнаруживаются заметные запах или привкус (что и является причиной жалоб на качество воды);

при 4-х баллах различаются отчётливые запах или привкус, могущие заставить воздержаться от употребления воды;

при 5-ти баллах вода имеет такие сильные запах или привкус, что становится совершенно непригодной для питья.

Вкус воды обусловлен наличием в ней растворенных веществ, придающий ей определенный привкус, который может быть солоноватым, горьковатым, сладковатым и кисловатым. Природные воды имеют, как правило, только солоноватый и горьковатый привкус. Причем солоноватый привкус появляется у воды, содержащей хлорид натрия, а горьковатый привкус дает избыток сульфата магния. Вода с большим количеством растворённой углекислоты (т.н. минеральные воды) имеет кислый вкус. Вода с чернильным или железистым привкусом насыщена солями железа и марганца; вяжущий привкус ей придает сульфат кальция, перманганат калия; щелочной привкус вызывается содержанием в воде соды, поташи, щелочи. Привкус может иметь естественное происхождение (присутствие марганца, железа, метана, сероводорода и т.д.) и искусственное происхождение (при сбросе промышленных стоков). Требования СанПиН 2.1.4.559-9 к питьевой воде - привкус не более 2 баллов.

Запахи воде придают различные живущие и отмершие организмы, растительные остатки, специфические веществами, выделяемые некоторыми водорослями и микроорганизмами, а также присутствие в воде растворенных газов, таких как хлор, аммиак, сероводород, меркаптаны или органических и хлорорганических загрязнений. Запахи бывают природного (естественного) и искусственного происхождения. К первым относятся такие запахи, как древесный, ароматический, землистый, болотный, плесневый, гнилостный, травянистый, рыбный, неопределённый и сероводородный и др. Запахи искусственного происхождения получают свое название по определяющим их веществам: камфорный, фенольный, хлорный, смолистый, аптечный, хлор-фенольный, запах нефтепродуктов и т. д.

Требования СанПиН 2.1.4.559-9 к питьевой воде - запах не более 2 баллов.

Химические показатели качества воды

Общая минерализация (сухой остаток). Общая минерализация - количественный показатель растворенных в 1 л воды веществ (неорганических солей, органических веществ - кроме газов). Этот показатель также называют общим солесодержанием. Его характеристикой является сухой остаток, получаемый в результате выпаривания профильтрованной воды и высушивании задержанного остатка до постоянной массы. Российскими нормативами допускается минерализация воды, используемой для хозяйственно-питьевых целей, не более 1000 - 1500 мг/л. Сухой остаток для питьевой воды не должен превышать 1000 мг/л.

Активная реакция воды (степень её кислотности или щёлочности) определяется соотношением существующих в ней кислых (водородных) и щелочных (гидроксильных) ионов. При ее характеристике пользуются рН – водородным и гидроксильным показателями, определяющими, соответственно, кислотность и щелочность воды. Величина водородного показателя pH равна отрицательному десятичному логарифму концентрации водородных ионов в воде. При равном количестве кислотных и щелочных ионов, реакция воды нейтральная, а значение pH=7. При рН<7,0 вода имеет кислую реакцию; при рН>7,0 – щелочную. Нормы СанПиН 2.1.4.559-96 требуют, чтобы значение рН питьевой воды находилось в пределах 6,0...9,0. Большинство природных источников имеют значение рН в указанных пределах. Однако может вызвать существенное изменение значения рН. Правильная оценка качества воды и точный выбор способа ее очистки предполагает знание рН воды источников в различные периоды года. Вода с низкими значениями рН оказывает сильное коррозирующее воздействие на сталь и бетон.

Часто качество воды описывается через такой термин, как жесткость. Требования к качеству воды по показателю жесткости в России и Европе очень сильно различаются: 7 мг-экв/л (по российским нормам) и 1 мг-экв/л (директива Совета ЕС). Повышенная жесткость представляет собой самую распространенную проблему качества воды.

Жесткость воды – показатель, характеризующий содержание в воде солей жесткости (главным образом, кальция и магния). Он измеряется в миллиграмм-эквивалентах на литр (мг-экв/л). Различают такие понятия как карбонатная (временная) жесткость, некарбонатная (постоянная) жесткость и общая жесткость воды.

Карбонатная жесткость (устранимая) – показатель наличия в воде гидрокарбоната кальция и магния. При кипячении воды происходит его разложение с образованием малорастворимых солей и углекислого газа.

Некарбонатная или постоянная жесткость определяется содержанием в воде некарбонатных солей кальция и магния - сульфатов, хлоридов, нитратов. При кипячении воды они не выпадают в осадок и остаются в растворе.

Общая жесткость – суммарная величина содержания в воде солей кальция и магния; представляет собой сумму карбонатной и некарбонатной жесткости.

В зависимости от величины жесткости вода характеризуется как:

Величина жесткости воды значительно варьирует в зависимости от того, какие типы пород и почв слагают бассейн водосбора; от погодных условий и сезона года. Так, в поверхностных источниках вода, как правило, относительно мягкая (3...6 мг-экв/л) и зависит от расположения - чем южнее, тем выше жесткость воды. Жесткость подземных вод меняется в зависимости от глубины и расположения горизонта водоносного слоя и величины годового объема осадков. В слое известняка жесткость воды обычно составляет 6 мг-экв/л и более.

Жесткость питьевой воды (по нормам СанПиН 2.1.4.559-96) не должна превышать 7,0 мг-экв/л.

Жесткая вода из-за избытка кальция обладает неприятным вкусом. Опасность постоянного употребления воды с повышенной жесткостью - в снижении моторики желудка, накоплении солей в организме, риске заболевания суставов (артриты, полиартриты) и образования камней в почках и желчных путях. Правда, очень мягкая вода также не полезна. Мягкая вода, обладающая большой активностью, способна вымывать кальций из костей, что ведет к их ломкости; развитию рахита у детей. Еще одним неприятным свойством мягкой воды является ее способность при прохождении через пищеварительный тракт вымывать также полезные органические вещества, в том числе и полезные бактерии. Оптимальный вариант - вода жесткостью 1,5-2 мг-экв/л.

Уже общеизвестно, что нежелательно использовать жесткую воду для хозяйственных целей. Такие последствия, как налет на сантехнических приборах и арматуре, образование накипи в водонагревательных системах и приборах – очевидны! Образование осадка кальциевых и магниевых солей жирных кислот при хозяйственно-бытовом использовании жесткой воды приводит к значительному росту расхода моющих средств и замедлению процесса приготовления пищи, что проблемно для пищевой промышленности. В ряде случаев использование жесткой воды в производственных целях (в текстильной бумажной промышленности, на предприятиях искусственного волокна, для питания паровых котлов и др.) запрещается из-за нежелательных последствий.

Использование жесткой воды уменьшает срок службы водонагревательной техники (бойлеров, батарей центрального водоснабжения и др.). Отложение солей жесткости (гидрокарбонатов Ca и Mg) на внутренних стенках труб, накипные отложения в водонагревательных и охлаждающих системах уменьшают проходное сечение, снижают теплоотдачу. В системах оборотного водоснабжения не допускается использовать воду с высокой карбонатной жесткостью.

Щёлочность воды . Общая щёлочность воды – это сумма содержащихся в ней гидратов и анионов слабых кислот (кремниевой, угольной, фосфорной и т.д.). При характеристике подземных вод в подавляющем большинстве случаев используют гидрокарбонатную щёлочность, то есть содержание в воде гидрокарбонатов. Формы щелочности: бикарбонатная, карбонатная и гидратная. Определение щелочности (мг-экв/л) производится в целях контроля качества питьевой воды; для определения пригодности воды для полива; для расчета содержания карбонатов, для последующей очистки сточных вод.

ПДК по щелочности 0,5 - 6,5 ммоль / дм3.

Хлориды – их присутствие наблюдается практически во всех водах. Их наличие в воде объясняется вымыванием из горных пород хлорида натрия (поваренной соли), очень распространённой на Земле соли. Значительное количество хлоридов натрия содержится в морской воде, а также в воде некоторых озер и подземных источников.

В зависимости от стандарта ПДК хлоридов в питьевой воде равняется 300...350 мг/л.

Повышенное содержание хлоридов с одновременным присутствием в воде нитритов, нитратов и аммиака встречается в случае загрязнённости источника бытовыми сточными водами.

Сульфаты наличествуют в подземных водах, как результат растворения гипса, имеющегося в пластах. При избыточном содержании сульфатов в воде у человека возникает расстройство желудочно-кишечного тракта (эти соли обладают слабящим эффектом).

ПДК сульфатов в питьевой воде составляет 500 мг/л.

Содержание кремниевых кислот . Кремниевые кислоты различной формы (от коллоидной до ионодисперсной) встречаются в воде подземных и поверхностных источников. Кремний имеет малую растворимость, и его содержание в воде, как правило, невелико. Попадание кремния в воду происходит также с промышленными стоками предприятий, осуществляющих производство керамики, цемента, стекольных изделий, силикатных красок.

ПДК кремния составляет 10 мг/л. Использование воды, содержащей кремниевые кислоты, запрещено для питания котлов высокого давления – из-за образования силикатной накипи на стенках.

Фосфатов в воде обычно немного, поэтому их повышенное содержание сигналит о возможном загрязнении промышленными стоками или стоками с сельскохозяйственных полей. При повышенном содержании фосфатов усиленно развиваются сине-зелёные водоросли, выделяющие токсины в воду при отмирании.

ПДК соединений фосфора в питьевой воде - 3,5 мг/л.

Фториды и йодиды . Фториды и йодиды имеют некоторую схожесть. Недостаток или избыток этих элементов в организме человека приводит к серьёзным заболеваниям. Например, недостаток (избыток) йода провоцирует заболевания щитовидной железы ("зоб"), развивающиеся, когда суточный рацион йода менее 0,003 мг или более 0,01 мг. Фториды содержатся в минералах - солях фтора. Содержание фтора в питьевой воде для сохранения здоровья человека должно находиться в пределах 0,7 - 1,5 мг/л (зависит от климата).

Поверхностные источники имеют, преимущественно, низкое содержание фтора (0,3-0,4 мг/л). Содержание фтора в поверхностных водах повышается следствие сброса промышленных фторсодержащих сточных вод или при контакте вод с почвами, насыщенными соединениями фтора. Так, артезианские и минеральные воды, контактирующие со фторсодержащими водовмещающими породами, имеют максимальную концентрацию фтора 5-27 мг/л и более. Важной характеристикой для здоровья человека является количество фтора в его суточном рационе. Обычно содержание фтора в суточном рационе составляет от 0,54 до 1,6 мг фтора (усреднено - 0,81 мг). Стоит отметить, что в организм человека с пищевыми продуктами поступает в 4-6 раз меньше фтора, чем с питьевой водой, имеющей оптимальное его содержание (1 мг/л).

При повышенном содержании фтора в воде (более 1,5 мг/л) появляется опасность развития у населения эндемического флюороза (т.н. "пятнистой эмали зубов"), рахита и малокровия. Эти заболевания сопровождаются характерным поражением зубов, нарушением процессов окостенения скелета, истощением организма. Поэтому в питьевой воде содержание фтора лимитируется. Фактом является и то, некоторое содержание фтора в воде необходимо для снижения уровня заболеваний, определяемых последствиями одонтогенной инфекции (сердечно-сосудистая патология, ревматизм, заболевания почек и др.). При употреблении воды с содержанием фтора менее 0,5 мг/л развивается кариес зубов, поэтому в таких случаях врачи рекомендуют пользоваться фторсодержащей зубной пастой. Фтор лучше усваивается организмом из воды. Исходя из вышеизложенного, оптимальной дозой фтора в питьевой воде является величина 0,7...1,2 мг/л.

ПДК фтора - 1,5 мг/л.

Окисляемость перманганатная – параметр, обусловленный присутствием в воде органических веществ; отчасти он может сигнализировать о загрязнённости источника сточными водами. В зависимости от того, какой окислитель используется при , различается окисляемость перманганатная и окисляемость бихроматная (или ХПК - химическая потребность в кислороде). Перманганатная окисляемость является характеристикой содержания легкоокисляемой органики, бихроматная - общего содержания органических веществ в воде. Количественное значение этих показателей и их соотношение позволяет косвенно судить о природе присутствующих в воде органических веществ, а также о способах и эффективности очистки воды.

По требованиям СанПиН: величина перманганатной окисляемости воды не должна превышать 5,0 мг О 2 /л. Вода с перманганатной окисляемостью менее 5 мг О 2 /л считается чистой, более 5 мг О 2 /л - грязной.

В истинно растворённом виде (двухвалентное железо Fe2+). Содержится обычно в артезианских скважинах (отсутствует растворенный кислород). Вода прозрачная бесцветная. Если содержание такого железа в ней высокое, то при отстаивании или нагреве вода становится желтовато-бурой;

В нерастворённом виде (трёхвалентное железо Fe3+) содержится в поверхностных источниках водоснабжения. Вода прозрачная - с коричневато-бурым осадком или ярко выраженными хлопьями;

В коллоидном состоянии или виде тонкодисперсной взвеси. Вода мутная, окрашенная, желтовато-коричневая опалесцирующая. Коллоидные частицы, находясь во взвешенном состоянии, не выпадают в осадок даже при длительном отстаивании;

В виде так называемой железоорганики - солей железа и гуминовых и фульвокислот. Вода прозрачная, желтовато-коричневая;

Железобактерии, образующие коричневую слизь на водопроводных трубах.

Содержание железа в поверхностных водах средней полосы России - от 0,1 до 1,0 мг/дм 3 железа; в подземных водах эта величина достигает 15-20 мг/дм 3 и более. Важно проведение анализа на содержание железа в сточных водах. Особенно «засоряют» водоемы железом сточные воды предприятий металлообрабатывающей, металлургической, лакокрасочной промышленности, текстильной, а также сельскохозяйственные стоки. На концентрацию железа в воде влияют величина рН и содержание кислорода в воде. В колодезной и скважинной воде железо может находиться в окисленной и в восстановленной форме, однако при отстаивании воды оно всегда окисляется и может выпадать в осадок.

СанПиН 2.1.4.559-96 допускают общее содержание железа не более 0,3 мг/л.

Считается, что железо не токсично для человеческого организма, но при длительном употреблении воды с избыточным содержанием железа может произойти отложение его соединений в тканях и органах человека. Вода, загрязненная железом, имеет неприятный вкус, приносит неудобства в быту. На ряде промышленных предприятий, использующих воду для промывки продукта при его изготовлении, например, в текстильной промышленности, даже небольшое содержание железа в воде значительно снижает качество продукции.

Марганец встречается в воде в аналогичных модификациях. Марганец – это металл, активизирующий ряд ферментов, участвующий в процессах дыхания, фотосинтеза, влияющий на кроветворение и минеральный обмен. При недостатке марганца в почве у растений наблюдаются хлорозы, некрозы, пятнистости. Поэтому почвы, бедные марганцем (карбонатные и переизвесткованные), обогащаются марганцевыми удобрениями. Для животных недостаток этого элемента в кормах приводит к замедлению роста и развития, нарушению минерального обмена, развитию анемии. Человек страдает как от недостатка, так и от переизбытка марганца.

Нормы СанПиН 2.1.4.559-96 допускают содержание марганца в питьевой воде не более 0,1 мг/л.

Переизбыток марганца в воде может вызвать заболевание костной системы человека. Такая вода имеет неприятный металлический привкус. Ее длительное употребление приводит к отложению марганца в печени. Присутствие в воде марганца и железа способствует образованию железистых и марганцевых бактерий, продукты жизнедеятельности которых в трубах и теплообменных аппаратах вызывают уменьшение их сечения, иногда и полную их закупорку. Вода, используемая в пищевой, текстильной промышленности, при производстве пластмасс и др., должна содержать строго ограниченное количество железа и марганца.

Также переизбыток марганца приводит к окрашиванию белья при стирке, образованию черных пятен на сантехнике и посуде.

Натрий и калий - попадание этих элементов в подземные воды происходит в процессе растворения коренных пород. Основной источник натрия в природных водах - залежи поваренной соли NaCl, возникшие в местах нахождения древних морей. Калий в водах встречается реже – из-за его поглощения почвой и растениями.

Натрий играет важную биологическую роль для большинства форм жизни на Земле, в том числе и для человека. Человеческий организм содержит примерно 100 г натрия. Ионами натрия выполняется задача активизации ферментативного обмена в организме человека.

По нормам СанПиН 2.1.4.559-96 ПДК натрия - 200 мг/л. Избыток натрия в воде и пище провоцирует у человека развитие гипертензии и гипертонии.

Калий способствует усилению выведения воды из организма. Это его свойство используется для облегчения функционирования сердечно-сосудистой системы при ее недостаточности, исчезновения или существенного уменьшения отеков. Недостаток калия в организме приводит к нарушениям функций нервно-мышечной (параличи и парезы) и сердечно-сосудистой систем и способствует депрессии, дискоординации движений, мышечной гипотонии, судорогам, артериальной гипотонии, изменениям на ЭКГ, нефритам, энтеритам и др. ПДК калия - 20 мг/л.

Медь, цинк, кадмий, мышьяк, свинец, никель, хром и ртуть – попадание этих элементов в источники водоснабжения происходит преимущественно с промышленными стоками. Рост содержания меди и цинка может также являться следствием коррозии оцинкованных и медных водопроводных труб в случае повышенного содержания агрессивной углекислоты.

По нормам СанПиН ПДК этих элементов составляет: для меди - 1,0 мг/л; цинка - 5,0 мг/л; свинца - 0,03 мг/л; кадмия - 0,001 мг/л; никеля - 0,1 мг/л (в странах ЕС - 0,05 мг/л), мышьяка - 0,05 мг/л; хрома Cr3+ - 0,5 мг/л, ртути - 0,0005 мг/л; хрома Cr4+ - 0,05 мг/л.

Все эти соединения - тяжёлые металлы, обладающие кумулятивным действием, то есть они имеют свойство накапливаться в организме.

Кадмий очень токсичен. Накопление кадмия в организме может приводить к таким заболеваниям, как анемия, поражение печени, почек и легких, кардиопатия, эмфизема легких, остеопороз, деформация скелета, гипертония. Избыток этого элемента провоцирует и усиливает дефицит Se и Zn. Симптомами кадмиевого отравления являются поражение центральной нервной системы, белок в моче, острые костные боли, дисфункция половых органов. Все химические формы кадмия представляют опасность.

Алюминий – легкий металл серебристо-белого цвета. В первую очередь его попадание в воду происходит в процессе водоподготовки - в составе коагулянтов и при сбросе сточных вод переработки бокситов.

В воде ПДК солей алюминия составляет 0,5 мг/л.

При избытке алюминия в воде происходит повреждение центральной нервной системы человека.

Бор и селен – присутствие этих элементов в некоторых природных водах обнаруживается в весьма незначительной концентрации. Необходимо помнить, что их повышенная концентрация приводит к серьёзному отравлению.

Кислород пребывает в воде в растворенном виде. В подземных водах растворенный кислород отсутствует. Его содержание в поверхностных водах зависит от температуры воды, а также определяется интенсивностью процессов обогащения или обеднения воды кислородом, достигая до 14 мг/л.

Даже значительное содержание кислорода и двуокиси углерода не ухудшает качество питьевой воды, способствуя, в то же время, росту коррозии металла. Повышение температуры воды, а также ее подвижность усиливают процесс коррозии. Повышенное содержание в воде агрессивной двуокиси углерода делает подверженными коррозии также стенки бетонных труб и резервуаров. Присутствие кислорода не допустимо в питательной воде паровых котлов среднего и высокого давления. Сероводород имеет свойство придавать воде характерный неприятный запах и вызывать коррозию металлических стенок котлов, баков и труб. Из-за этого не допускается присутствие сероводорода в воде хозяйственно-питьевого назначения и в воде для большинства производственных нужд.

Соединения азота. К азотосодержащим веществам относятся нитриты NO 2 - , нитраты NO 3 - и аммонийные соли NH 4 + , почти всегда присутствующие во всех водах, в том числе подземных. Их наличие свидетельствует о том, что в воде имеются органические вещества животного происхождения. Эти вещества образуются в результате распада органических примесей, преимущественно - мочевины и белков, которые попадают в воду с бытовыми сточными водами. Рассматриваемая группа ионов находится в тесной взаимосвязи.

Первый продукт распада - аммиак (аммонийный азот) , образуется в результате распада белков и является показателем свежего фекального загрязнения. Окисление ионов аммония до нитратов и нитритов в природной воде осуществляется бактериями Nitrobacter и Nitrosomonas. Нитриты - лучший показатель свежего фекального загрязнения воды, особенно если одновременно повышенно содержание аммиака и нитритов. Нитраты -показатель более давнего органического фекального загрязнения воды. Содержание нитратов вместе с аммиаком и нитритами недопустимо.

Таким образом, наличие, количество и соотношение в воде азотсодержащих соединений позволяет судить о том, как сильно и как давно вода заражена продуктами жизнедеятельности человека. При отсутствии в воде аммиака и, в то же время, наличии нитритов и особенно нитратов можно сделать вывод, что водоем подвергся загрязнению давно, и за это время произошло самоочищение воды. Если в водоеме присутствует аммиак и нет нитратов, значит, загрязнение воды органическими веществами случилось недавно. В питьевой воде не допускается содержание аммиака и нитритов.

ПДК в воде: аммоний - 2,0 мг/л; нитриты - 3,0 мг/л; нитраты - 45,0 мг/л.

Если концентрация иона аммония в воде превышает фоновые значения, значит, загрязнение произошло недавно, а источник загрязнения находится близко. Это могут быть животноводческие фермы, коммунальные очистные сооружения, скопления азотных удобрений, навоза, поселения, отстойники промышленных отходов и др.

При употреблении воды с повышенным содержанием нитратов и нитритов у человека нарушается окислительная функция крови.

Хлор вводится в питьевую воду при её . Обеззараживающее действие хлор проявляет, окисляя или хлорируя (замещая) молекулы веществ, входящие в состав цитоплазмы клеток бактерий, в результате чего бактерии гибнут. Чрезвычайно чувствительными к хлору являются возбудители дизентерии, брюшного тифа, холеры и паратифов. Сравнительно малые дозы хлора дезинфицируют даже сильно заражённую бактериями воду. Однако не происходит полной стерилизации воды из-за сохраняющих жизнеспособность отдельных хлоррезистентных особей.

Свободный хлор - вредное для здоровья человека вещество, поэтому в питьевой воде централизованного водоснабжения гигиеническими нормами СанПиН строго регламентируется содержание остаточного свободного хлора. СанПиН устанавливает верхнюю и минимально-допустимую границы содержания свободного остаточного хлора. Проблема в том, что, хотя воду и обеззараживают на станции водоочистки, на пути к потребителю она подвергается риску вторичного заражения. Например, в стальной подземной магистрали могут быть свищи, через которые в магистральную воду попадают почвенные загрязнения.

Поэтому нормы СанПиН 2.1.4.559-96 предусматривают содержание остаточного хлора в водопроводной воде не менее 0,3 мг/л и не более 0,5 мг/л.

Хлор токсичен и является сильным аллергиком, поэтому хлорированная вода оказывает неблагоприятное воздействие на кожу и слизистые оболочки. Это и покраснения различных участков кожи, и проявления аллергического конъюктевита (отек век, жжение, слезотечение, болевые ощущения в области глаз). Хлор также вредно воздействует на дыхательную систему: в результате пребывания в бассейне с хлорированной водой в течение нескольких минут у 60% пловцов наблюдается проявление бронхоспазма.

Около 10% хлора, применяющегося при хлорировании воды, образуют хлорсодержащие соединения, такие как хлороформ, дихлорэтан, четырёххлористый углерод, тетрахлоэтилен, трихлорэтан. 70 - 90 % образующихся при водоподготовке хлорсодержащих веществ составляет хлороформ. Хлороформ способствует профессиональным хроническим отравлениям с преимущественным поражением печени и центральной нервной системы.

Также при хлорировании существует вероятность образования диоксинов, являющихся чрезвычайно токсичными соединениями. Высокая степень токсичности хлорированной воды многократно увеличивает риск развития онкологии. Так, американские эксперты считают хлорсодержащие вещества в питьевой воде косвенно или непосредственно виновными в 20 онкозаболеваниях на 1 млн. жителей.

Сероводород встречается в подземных водах и имеет преимущественно неорганическое происхождение.

В природе происходит постоянное образование этого газа при разложении белковых веществ. Он имеет характерный неприятный запах; провоцирует коррозию металлических стенок баков, котлов и труб; является общеклеточным и каталитическим ядом. При соединении с железом образует черный осадок сернистого железа FeS. Все вышесказанное является основанием для полного удаления сероводорода из воды хозяйственно-питьевого назначения (см. ГОСТ 2874-82 "Вода питьевая").

Стоит отметить, что СанПиН 2.1.4.559-96 допускает присутствие сероводорода в воде до 0,003 мг/л. Вопрос – не опечатка ли это в нормативном документе?!

Микробиологические показатели. Общее микробное число (ОМЧ) определяется количеством бактерий, содержащихся в 1 мл воды. Согласно требованиям ГОСТ, в питьевой воде не должно содержаться более 100 бактерий в 1 мл.

Количество бактерий группы кишечной палочки представляет особую важность для санитарной оценки воды. Наличие в воде кишечной палочки - свидетельство загрязнении ее фекальными стоками и, как следствие, риска попадания в нее болезнетворных бактерий. Определение наличия патогенных бактерий при биологическом анализе воды затруднено, и бактериологические исследования сводятся к определению общего числа бактерий в 1 мл воды, растущих при 37ºС, и кишечной палочки - бактерии коли. Наличие последней сигнализирует о загрязнении воды выделениями людей, животных и т.п. Минимальный объем испытуемой воды, мл, приходящейся на одну кишечную палочку, называется колититром, а количество кишечных палочек в 1 л воды - коли-индексом. По ГОСТ 2874-82 допускается коли-индекс до 3, колититр - не менее 300, а общее число бактерий в 1 мл - до 100.

По нормам СанПиН 2.1.4.559-96 допустимо общее микробное число 50 КОЕ/мл, общие колиформные бактерии (ОКБ) КОЕ/100мл и термотолетарные колиформные бактерии (ТКБ) КОЕ/100мл - не допускаются.

Патогенные бактерии и вирусы, находящиеся в воде, могут вызвать заболевания дизентерией, брюшным тифом, парафитом, амебиазом, холерой, диареей, бруцеллезом, инфекционным гепатитом, туберкулезом, острым гастроэнтеритом, сибирской язвой, полиомиелитом, туляремией и др.

КомпанияWaterman предлагает Вам профессиональное решение задачи очистки воды от соединений, содержание которых в воде выше нормативного. Наши специалисты проконсультируют по возникшим вопросам и помогут в выборе и внедренииоптимальной схемы водоочистки, исходя из конкретных исходных данных.

Природная воды имеет слабощелочную реакцию (6,0-9,0). Увеличение щелочности указывает на загрязнение ее или цветение водоема. Кислая реакция воды отмечается при наличии гуминовых веществ или проникновении промышленных сточных вод.

Жесткость. Жесткость воды зависит от химического состава почвы, через которую проходит вода, содержания в ней оксида углерода, степени загрязнения ее органическими веществами. Измеряется либо в мг-экв/л, либо в градусах. По степени жесткости вода бывает: мягкая (до 3мг-экв/л); средней жесткости (7мг=экв/Л); жесткая (14мг=экв/л); очень жесткая (свыше 14мг-ээкв/Л). Очень жесткая вода имеет неприятный вкус, может ухудшать течение почечнокаменной болезни.

Окисляемость воды – это количество кислорода в миллиграммах, которое расходуется на химическое окислении е органических и неорганических веществ, содержащихся в 1л воды. Повышенная окисляемость может указывать на загрязнение воды.

Сульфаты в количествах, превышающих 500мг/л, придают воде горьковато-соленноватый вкус, при концентрации 1000-1500мг/л неблагоприятно влияют на желудочную секрецию, могут вызвать диспепсические явления. Сульфаты могут быть показателем загрязнения поверхностных вод животными отбросами.

Повышенное содержание железа вызывает окрашивание, помутнение, придает воде запах сероводорода, неприятный чернильный привкус, а в сочетании мс гуминовыми соединениями – болотный привкус.

Аммиак в воде расценивается как показатель опасного в эпидемиологическом отношении свежего загрязнения воды органическими веществами животного происхождения. Показателем более давнего загрязнения являются соли азотистой кислоты – нитраты, которые представляют собой продуты окисления аммиака под влиянием микроорганизмов в процессе нитрификации наличие в воде нитратов без аммиака си солей азотистой кислоты указывает на завершение процесса минерализации и при высоком их содержании в воде свидетельствуют о давнишнем загрязнении ее. Однако содержание в воде всех трех компонентов – аммиака, нитритов и нитратов – свидетельствует о незавершенности процесса минерализации и опасном в эпидемиологическом отношении загрязнении воды.

52. Методы улучшения качества воды .

I.Основные методы

1.Осветление и обесцвечивание (очистка): отстаивание, фильтрация, коагуляция.

2.Обеззараживание: кипячение, хлорирование, озонирование, облучение УФ-лучами, использование олигодинамического действия серебра, применение ультразвука, применение гамма-лучей.


II.Методы специальной обработки: дезодорация, дегазация, обезжелезивание, умягчение, опреснение, обесфторирование, фторирование, дезактивация.

На первом этапе очистки воды из открытого водоисточника проводится ее осветление и обесцвечивание. Под осветлением и обесцвечиванием понимается устранение из воды взвешенных веществ и окрашенных коллоидов (в основном гуминовых веществ) и достигается отстаиванием, фильтрацией. Эти процессы протекают медленно и эффективность обесцвечивания невелика. Стремление ускорить осаждение взвешенных частиц, ускорить процесс фильтрации привело к проведению предварительного коагулирования воды химическими веществами (коагулянтами), образующими гидроокиси с быстро оседающими хлопьями и ускоряющими осаждение взвешенных частиц.

В качестве коагулянтов применяют сернокислый алюминий – Al2(SO4)3; хлорное железо – FeCl3; сернокислое железо – FeSO4 и др. Коагулянты при правильно произведенной обработке воды безвредны для организма, так как остаточные количества алюминия и железа весьма малы (алюминия - 1,5 мг/л, железа – 0,5 – 1,0 мг/л).

После коагуляции и отстаивания вода подвергается фильтрации на скорых или медленных фильтрах.

При любой схеме заключительным этапом обработки воды на очистном сооружении водопровода должно быть обеззараживание. Его задача – уничтожение патогенных микроорганизмов, т.е. обеспечение эпидемической безопасности воды. Обеззараживание может быть проведено химиче-скими и физическими (безреагентными) методами.

Кипячение является простым и надежным методом. Вегетативные микроорганизмы погибают при нагревании до 800С уже через 20 – 40 се-кунд, поэтому в момент закипания вода фактически обеззаражена.

Ультразвук применяется для обеззараживания бытовых сточных вод. Он эффективен в отношении всех микроорганизмов, включая споровые формы, а так же его применение не приводит к пенообразованию при обеззараживании бытовых стоков.

Гамма – излучение – очень надежный и эффективный метод, мгновенно уничтожающий все виды микроорганизмов.

К реагентам, которые не изменяют химического состава воды при обеззараживании, относится озон.

В настоящее время основным методом, используемым для обеззараживания воды на водопроводных станциях в силу технико – экономических причин, является метод хлорирования.

Эффективность обеззараживания воды зависит от подобранной дозы хлора, времени контакта активного хлора с водой, температуры воды и от многих других факторов.

К модификациям хлорирования относят: двойное хлорирование, хлорирование с аммонизацией, перехлорирование.

Кондиционирование минерального состава воды можно разделить на удаление из воды солей или газов, находящихся в ней в избыточном количестве (умягчение, обессоливание и опреснение, обезжелезивание, дефторирование, дегазация, дезактивация и др.) и добавление минеральных веществ с целью улучшения органолептических и физиологических свойств воды (фторирование, частичная минерализация после опреснения и др.).

Для обеззараживания индивидуальных запасов воды применяются таблетированные формы, содержащие хлор. Аквасепт, таблетки, содержащие 4 мг активного хлора мононатриевой соли дихлоризоциануровой кислоты. Пантоцид – препарат из группы органических хлораминов, растворимость – 15- 30 минут. Выделяет 3 мг активного хлора.

Величина, характеризующая содержание в воде органических и минеральных веществ, окисляемых одним из сильных химических окислителей при определенных условиях, называется окисляемостью. Существует несколько видов окисляемости воды: перманганатная, бихроматная, иодатная, цериевая. Наиболее высокая степень окисления достигается методами бихроматной и иодатной окисляемости воды.

Окисляемость выражается в миллиграммах кислорода, пошедшего на окисление органических веществ, содержащихся в 1 дм 3 воды.

Состав органических веществ в природных водах формируется под влиянием многих факторов. К числу важнейших относятся внутриводоемные биохимические процессы продуцирования и трансформации, поступления из других водных объектов,с поверхностными и подземными стоками, с атмосферными осадками, с промышленными и хозяйственно-бытовыми сточными водами. Образующиеся в водоеме и поступающие в него извне органические вещества весьма разнообразны по своей природе и химическим свойствам, в том числе по устойчивости к действию разных окислителей.

Соотношение содержащихся в воде легко-и трудноокисляемых веществ в значительной мере влияет на окисляемость воды в условиях того или иного метода ее определения.

В поверхностных водах органические вещества находятся в растворенном, взвешенном и коллоидном состояниях. Последние в рутинном анализе отдельно не учитываются, поэтому различают окисляемость фильтрованных (растворенное органическое вещество) и нефильтрованных (общее содержание органических веществ) проб.

Величины окисляемости природных вод изменяются в пределах от долей миллиграммов до десятков миллиграммов в литре в зависимости от общей биологической продуктивности водоемов, степени загрязненности органическими веществами и соединениями биогенных элементов, а также от влияния органических веществ естественного происхождения, поступающих из болот, торфяников и т.п. Поверхностные воды имеют более высокую окисляемость по сравнению с подземными (десятые и сотые доли миллиграмма на 1 дм 3), исключение составляют воды нефтяных месторождений и грунтовые воды, питающиеся за счет болот. Горные реки и озера характеризуются окисляемостью 2-3 мг О/дм 3 , реки равнинные - 5-12 мг О/дм 3 , реки с болотным питанием - десятки миллиграммов на 1 дм 3 .

Окисляемость незагрязненных поверхностных вод проявляет довольно отчетливую физико-географическую зональность (табл. 1).

Таблица 1. Физико-географическая зональность природных вод

Окисляемость подвержена закономерным сезонным колебаниям. Их характер определяется, с одной стороны, гидрологическим режимом и зависящим от него поступлением органических веществ с водосбора, с другой, - гидробиологическим режимом.

В водоемах и водотоках, подверженных сильному воздействию хозяйственной деятельности человека, изменение окисляемости выступает как характеристика, отражающая режим поступления сточных вод. Для природных малозагрязненных вод рекомендовано определять перманганатную окисляемость в более загрязненных водах определяют, как правило, бихроматную окисляемость (ХПК).

В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого водопользования величина ХПК не должна превышать 15 мг О/дм 3 ; в зонах рекреации в водных объектах допускается величина ХПК до 30 мг О/дм 3 .

В программах мониторинга ХПК используется в качестве меры содержания органического вещества в пробе, которое подвержено окислению сильным химическим окислителем. ХПК применяют для характеристики состояния водотоков и водоемов, поступления бытовых и промышленных сточных вод (в том числе, и степени их очистки), а также поверхностного стока.

Таблица 2. Величины ХПК в водоемах с различной степенью загрязненности

Для вычисления концентрации углерода, содержащегося в органических веществах, значение ХПК (мг О/дм 3) умножается на 0,375 (коэффициент, равный отношению количества вещества эквивалента углерода к количеству вещества эквивалента кислорода).

Биохимическое потребление кислорода (БПК)

Степень загрязнения воды органическими соединениями определяют как количество кислорода, необходимое для их окисления микроорганизмами в аэробных условиях. Биохимическое окисление различных веществ происходит с различной скоростью. К легкоокисляющимся ("биологически мягким") веществам относят формальдегид, низшие алифатические спирты, фенол, фурфурол и др. Среднее положение занимают крезолы, нафтолы, ксиленолы, резорцин, пирокатехин, анионоактивные ПАВ и др. Медленно разрушаются "биологически жесткие" вещества, такие как гидрохинон, сульфонол, неионогенные ПАВ и др.

БПК 5

В лабораторных условиях наряду с БПК п определяется БПК 5 - биохимическая потребность в кислороде за 5 суток.

В поверхностных водах величины БПК 5 изменяются обычно в пределах 0,5-4 мг O 2 /дм 3 и подвержены сезонным и суточным колебаниям.

Сезонные колебания зависят в основном от изменения температуры и от исходной концентрации растворенного кислорода. Влияние температуры сказывается через ее воздействие на скорость процесса потребления, которая увеличивается в 2-3 раза при повышении температуры на 10 o C. Влияние начальной концентрации кислорода на процесс биохимического потребления кислорода связано с тем, что значительная часть микроорганизмов имеет свой кислородный оптимум для развития в целом и для физиологической и биохимической активности.

Суточные колебания величин БПК 5 также зависят от исходной концентрации растворенного кислорода, которая может в течение суток изменяться на 2,5 мг О 2 /дм 3 в зависимости от соотношения интенсивности процессов его продуцирования и потребления. Весьма значительны изменения величин БПК 5 в зависимости от степени загрязненности водоемов.

Таблица 3. Величины БПК 5 в водоемах с различной степенью загрязненности

Для водоемов, загрязненных преимущественно хозяйственно-бытовыми сточными водами, БПК 5 составляет обычно около 70% БПК п.

В зависимости от категории водоема величина БПК 5 регламентируется следующим образом: не более 3 мг O 2 /дм 3 для водоемов хозяйственно-питьевого водопользования и не более 6 мг O 2 /дм 3 для водоемов хозяйственно-бытового и культурного водопользования. Для морей (I и II категории рыбохозяйственного водопользования) пятисуточная потребность в кислороде (БПК 5) при 20 о С не должна превышать 2 мг O 2 /дм 3 .

Определение БПК 5 в поверхностных водах используется с целью оценки содержания биохимически окисляемых органических веществ, условий обитания гидробионтов и в качестве интегрального показателя загрязненности воды. Необходимо использовать величины БПК 5 при контролировании эффективности работы очистных сооружений.

БПК п

Полным биохимическим потреблением кислорода (БПК п) считается количество кислорода, требуемое для окисления органических примесей до начала процессов нитрификации. Количество кислорода, расходуемое для окисления аммонийного азота до нитритов и нитратов, при определении БПК не учитывается. Для бытовых сточных вод (без существенной примеси производственных) определяют БПК 20 , считая, что эта величина близка к БПК п.

Полная биологическая потребность в кислороде БПК п для внутренних водоемов рыбохозяйственного назначения (I и II категории) при 20 о С не должна превышать 3 мг O 2 /дм 3 .

Растворенный кислород

Растворенный кислород находится в природной воде в виде молекул O 2 . На его содержание в воде влияют две группы противоположно направленных процессов: одни увеличивают концентрацию кислорода, другие уменьшают ее. К первой группе процессов, обогащающих воду кислородом, следует отнести:

    процесс абсорбции кислорода из атмосферы;

    выделение кислорода водной растительностью в процессе фотосинтеза;

    поступление в водоемы с дождевыми и снеговыми водами, которые обычно пересыщены кислородом.

Абсорбция кислорода из атмосферы происходит на поверхности водного объекта. Скорость этого процесса повышается с понижением температуры, с повышением давления и понижением минерализации. Аэрация - обогащение глубинных слоев воды кислородом - происходит в результате перемешивания водных масс, в том числе ветрового, вертикальной температурной циркуляции и т.д.

Фотосинтетическое выделение кислорода происходит при ассимиляции диоксида углерода водной

растительностью (прикрепленными, плавающими растениями и фитопланктоном). Процесс фотосинтеза протекает тем сильнее, чем выше температура воды, интенсивность солнечного освещения и больше биогенных (питательных) веществ (P ,N и др.) в воде. Продуцирование кислорода происходит в поверхностном слое водоема, глубина которого зависит от прозрачности воды (для каждого водоема и сезона может быть различной, от нескольких сантиметров до нескольких десятков метров).

К группе процессов, уменьшающих содержание кислорода в воде, относятся реакции потребления его на окисление органических веществ: биологическое (дыхание организмов), биохимическое (дыхание бактерий, расход кислорода при разложении органических веществ) и химическое (окисление Fe 2+ ,Mn 2+ ,NO 2 - ,NH 4 + ,CH 4 ,H 2 S ). Скорость потребления кислорода увеличивается с повышением температуры, количества бактерий и других водных организмов и веществ, подвергающихся химическому и биохимическому окислению. Кроме того, уменьшение содержания кислорода в воде может происходить вследствие выделения его в атмосферу из поверхностных слоев и только в том случае, если вода при данных температуре и давлении окажется пересыщенной кислородом.

В поверхностных водах содержание растворенного кислорода варьирует в широких пределах - от 0 до 14 мг/дм 3 - и подвержено сезонным и суточным колебаниям. Суточные колебания зависят от интенсивности процессов его продуцирования и потребления и могут достигать 2,5 мг/дм 3 растворенного кислорода. В зимний и летний периоды распределение кислорода носит характер стратификации. Дефицит кислорода чаще наблюдается в водных объектах с высокими концентрациями загрязняющих органических веществ и в эвтрофированных водоемах, содержащих большое количество биогенных и гумусовых веществ.

Концентрация кислорода определяет величину окислительно-восстановительного потенциала и в значительной мере направление и скорость процессов химического и биохимического окисления органических и неорганических соединений. Кислородный режим оказывает глубокое влияние на жизнь водоема. Минимальное содержание растворенного кислорода, обеспечивающее нормальное развитие рыб, составляет около 5 мг/дм 3 . Понижение его до 2 мг/дм 3 вызывает массовую гибель (замор) рыбы. Неблагоприятно сказывается на состоянии водного населения и пересыщение воды кислородом в результате процессов фотосинтеза при недостаточно интенсивном перемешивании слоев воды.

В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого и санитарного водопользования содержание растворенного кислорода в пробе, отобранной до 12 часов дня, не должно быть ниже 4 мг/дм 3 в любой период года; для водоемов рыбохозяйственного назначения концентрация растворенного в воде кислорода не должна быть ниже 4 мг/дм 3 в зимний период (при ледоставе) и 6 мг/дм 3 - в летний.

Определение кислорода в поверхностных водах включено в программы наблюдений с целью оценки условий обитания гидробионтов, в том числе рыб, а также как косвенная характеристика оценки качества поверхностных вод и регулирования процесса очистки стоков. Содержание растворенного кислорода существенно для аэробного дыхания и является индикатором биологической активности (т.е. фотосинтеза) в водоеме.

Таблица 4. Содержание кислорода в водоемах с различной степенью загрязненности

Уровень загрязненности воды и класс качества

Растворенный кислород

лето, мг/дм 3

зима, мг/дм 3

% насыщения

Очень чистые, I

Чистые, II

Умеренно загрязненные, III

Загрязненные, IV

Грязные, V

Очень грязные, VI

Относительное содержание кислорода в воде, выраженное в процентах его нормального содержания, называется степенью насыщения кислородом. Эта величина зависит от температуры воды, атмосферного

давления и солености. Вычисляется по формуле:

M - степень насыщения воды кислородом, %;

а - концентрация кислорода, мг/дм 3 ;

Р - атмосферное давление в данной местности, Па;

N - нормальная концентрация кислорода при данной температуре, минерализации (солености) и общем давлении 101308 Па.

Щелочность (рН)

Под щелочностью природных или очищенных вод понимают способность некоторых их компонентов связывать эквивалентное количество сильных кислот. Щелочность обусловлена наличием в воде анионов слабых кислот (карбонатов, гидрокарбонатов, силикатов, боратов, сульфитов, гидросульфитов, сульфидов, гидросульфидов, анионов гуминовых кислот, фосфатов).

Их сумма называется общей щелочностью . Ввиду незначительной концентрации трех последних ионов общая щелочность воды обычно определяется только анионами угольной кислоты (карбонатная щелочность). Анионы, гидролизуясь, образуют гидроксид-ионы:

CO 3 2- + H 2 O Û HCO 3 - + OH - ;

HCO 3 - + H 2 O Û H 2 CO 3 + OH - .

Щелочность определяется количеством сильной кислоты, необходимой для нейтрализации 1 дм 3 воды. Щелочность большинства природных вод определяется только гидрокарбонатами кальция и магния, pH этих вод не превышает 8,3.

Определение щелочности полезно при дозировании химических веществ, необходимых на обработку вод для водоснабжения, а также при реагентной очистке некоторых сточных вод. Определение щелочности при избыточных концентрациях щелочноземельных металлов важно для установлении пригодности воды для ирригации. Вместе со значениями рН щелочность воды служит для расчета содержания карбонатов и баланса угольной кислоты в воде.

Водородный показатель (рН)

CO 2 + H 2 0 Û H + + HCO 3 - Û 2 H + + CO 3 2- .

Для удобства выражения содержания водородных ионов была введена величина, представляющая собой логарифм их концентрации, взятый с обратным знаком:

pH = -lg.

Для поверхностных вод, содержащих небольшие количества диоксида углерода, характерна щелочная реакция. Изменения pH тесно связаны с процессами фотосинтеза (при потреблении CO 2 водной

растительностью высвобождаются ионы ОН -). Источником ионов водорода являются также гумусовые кислоты, присутствующие в почвах. Гидролиз солей тяжелых металлов играет роль в тех случаях, когда в воду попадают значительные количества сульфатов железа, алюминия, меди и других металлов:

Fe 2+ + 2H 2 O Þ Fe(OH) 2 + 2H + .

Значение pH в речных водах обычно варьирует в пределах 6,5-8,5, в атмосферных осадках 4,6-6,1, в болотах 5,5-6,0, в морских водах 7,9-8,3. Концентрация ионов водорода подвержена сезонным колебаниям. Зимой величина pH для большинства речных вод составляет 6,8-7,4, летом 7,4-8,2. Величина pH природных вод определяется в некоторой степени геологией водосборного бассейна.

В соответствии с требованиями к составу и свойствам воды водоемов у пунктов питьевого водопользования, воды водных объектов в зонах рекреации, а также воды водоемов рыбохозяйственного назначения, величина pH не должна выходить за пределы интервала значений 6,5-8,5.

ВеличинаpH воды - один из важнейших показателей качества вод. Величина концентрации ионов водорода имеет большое значение для химических и биологических процессов, происходящих в природных водах. От величины pH зависит развитие и жизнедеятельность водных растений, устойчивость различных форм миграции элементов, агрессивное действие воды на металлы и бетон. Величина pH воды также влияет на процессы превращения различных форм биогенных элементов, изменяет токсичность загрязняющих веществ.

В водоеме можно выделить несколько этапов процесса его закисления. На первом этапе рН практически не меняется (ионы бикарбоната успевают полностью нейтрализовать ионы Н + ). Так продолжается до тех пор, пока общая щелочность в водоеме не упадет примерно в 10 раз до величины менее 0,1 моль/дм 3 .

На втором этапе закисления водоема рН воды обычно не поднимается выше 5,5 в течение всего года. О таких водоемах говорят как об умеренно кислых. На этом этапе закисления происходят значительные изменения в видовом составе живых организмов.

На третьем этапе закисления водоема рН стабилизируется на значениях рН <5 (обычно рН 4,5), даже если атмосферные осадки имеют более высокие значения рН . Это связано с присутствием гумусовых веществ и соединений алюминия в водоеме и почвенном слое.

Природные воды в зависимости от рН рационально делить на семь групп (табл. 3.3).

Таблица 5. Группы природных вод в зависимости от рН

Группа

Примечание

Сильнокислые воды

результат гидролиза солей тяжелых металлов (шахтные и рудничные воды)

Кислые воды

поступление в воду угольной кислоты, фульвокислот и других органических кислот в результате разложения органических веществ

Слабокислые воды

присутствие гумусовых кислот в почве и болотных водах (воды лесной зоны)

Нейтральные воды

наличие в водах Ca(HCO 3) 2 , Mg(HCO 3) 2

Слабощелочные воды

наличие в водах Ca(HCO 3) 2 , Mg(HCO 3) 2

Щелочные воды

присутствие Na 2 CO 3 или NaHCO 3

Сильнощелочные воды

присутствие Na 2 CO 3 или NaHCO 3

Взвешенные вещества (грубодисперсные примеси) ВВ

Взвешенные твердые вещества, присутствующие в природных водах, состоят из частиц глины, песка, ила, суспендированных органических и неорганических веществ, планктона и различных микроорганизмов. Концентрация взвешенных частиц связана с сезонными факторами и режимом стока, зависит от пород, слагающих русло, а также от антропогенных факторов, таких как сельское хозяйство, горные разработки и т.п.

Взвешенные частицы влияют на прозрачность воды и на проникновение в нее света, на температуру, состав растворенных компонентов поверхностных вод, адсорбцию токсичных веществ, а также на состав и распределение отложений и на скорость осадкообразования. Вода, в которой много взвешенных частиц, не подходит для рекреационного использования по эстетическим соображениям.

В соответствии с требованиями к составу и свойствам воды водных объектов у пунктов хозяйственно-питьевого и культурно-бытового назначения содержание взвешенных веществ в результате спуска сточных вод не должно увеличиваться соответственно более, чем на 0,25 мг/дм 3 и 0,75 мг/дм 3 . Для водоемов, содержащих в межень более 30 мг/дм 3 природных минеральных веществ, допускается увеличение концентрации взвешенных веществ в пределах 5%.

Определение количества взвешенных частиц важно проводить при контроле процессов биологической и физико-химической обработки сточных вод и при оценке состояния природных водоемов.

Грубодисперсные примеси определяют гравиметрическим методом после их отделения путем фильтрования через фильтр "синяя лента" (преимущественно для проб с прозрачностью менее 10 см).