Solving quadratic equations with one root. Quadratic equations. Solving Quadratic Equations

", that is, equations of the first degree. In this lesson we will look at what is called a quadratic equation and how to solve it.

What is a quadratic equation?

Important!

The degree of an equation is determined by the highest degree to which the unknown stands.

If the maximum power in which the unknown is “2”, then you have a quadratic equation.

Examples of quadratic equations

  • 5x 2 − 14x + 17 = 0
  • −x 2 + x +
    1
    3
    = 0
  • x 2 + 0.25x = 0
  • x 2 − 8 = 0

Important! The general form of a quadratic equation looks like this:

A x 2 + b x + c = 0

“a”, “b” and “c” are given numbers.
  • “a” is the first or highest coefficient;
  • “b” is the second coefficient;
  • “c” is a free member.

To find “a”, “b” and “c” you need to compare your equation with the general form of the quadratic equation “ax 2 + bx + c = 0”.

Let's practice determining the coefficients "a", "b" and "c" in quadratic equations.

5x 2 − 14x + 17 = 0 −7x 2 − 13x + 8 = 0 −x 2 + x +
Equation Odds
  • a = 5
  • b = −14
  • c = 17
  • a = −7
  • b = −13
  • c = 8
1
3
= 0
  • a = −1
  • b = 1
  • c =
    1
    3
x 2 + 0.25x = 0
  • a = 1
  • b = 0.25
  • c = 0
x 2 − 8 = 0
  • a = 1
  • b = 0
  • c = −8

How to Solve Quadratic Equations

Unlike linear equations for solving quadratic equations a special one is used formula for finding roots.

Remember!

To solve a quadratic equation you need:

  • reduce the quadratic equation to general appearance"ax 2 + bx + c = 0". That is, only “0” should remain on the right side;
  • use formula for roots:

Let's look at an example of how to use the formula to find the roots of a quadratic equation. Let's solve a quadratic equation.

X 2 − 3x − 4 = 0


The equation “x 2 − 3x − 4 = 0” has already been reduced to the general form “ax 2 + bx + c = 0” and does not require additional simplifications. To solve it, we just need to apply formula for finding the roots of a quadratic equation.

Let us determine the coefficients “a”, “b” and “c” for this equation.


x 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =

It can be used to solve any quadratic equation.

In the formula “x 1;2 = ” the radical expression is often replaced
“b 2 − 4ac” for the letter “D” and is called discriminant. The concept of a discriminant is discussed in more detail in the lesson “What is a discriminant”.

Let's look at another example of a quadratic equation.

x 2 + 9 + x = 7x

In this form, it is quite difficult to determine the coefficients “a”, “b” and “c”. Let's first reduce the equation to the general form “ax 2 + bx + c = 0”.

X 2 + 9 + x = 7x
x 2 + 9 + x − 7x = 0
x 2 + 9 − 6x = 0
x 2 − 6x + 9 = 0

Now you can use the formula for the roots.

X 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =
x =

6
2

x = 3
Answer: x = 3

There are times when quadratic equations have no roots. This situation occurs when the formula contains a negative number under the root.

Quadratic equations are studied in 8th grade, so there is nothing complicated here. The ability to solve them is absolutely necessary.

A quadratic equation is an equation of the form ax 2 + bx + c = 0, where the coefficients a, b and c are arbitrary numbers, and a ≠ 0.

Before studying specific solution methods, note that all quadratic equations can be divided into three classes:

  1. They have no roots;
  2. Have exactly one root;
  3. They have two different roots.

This is an important difference between quadratic equations and linear ones, where the root always exists and is unique. How to determine how many roots an equation has? There is a wonderful thing for this - discriminant.

Discriminant

Let the quadratic equation ax 2 + bx + c = 0 be given. Then the discriminant is simply the number D = b 2 − 4ac.

You need to know this formula by heart. Where it comes from is not important now. Another thing is important: by the sign of the discriminant you can determine how many roots a quadratic equation has. Namely:

  1. If D< 0, корней нет;
  2. If D = 0, there is exactly one root;
  3. If D > 0, there will be two roots.

Please note: the discriminant indicates the number of roots, and not at all their signs, as for some reason many people believe. Take a look at the examples and you will understand everything yourself:

Task. How many roots do quadratic equations have:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Let's write out the coefficients for the first equation and find the discriminant:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 1 12 = 64 − 48 = 16

So the discriminant is positive, so the equation has two different roots. We analyze the second equation in a similar way:
a = 5; b = 3; c = 7;
D = 3 2 − 4 5 7 = 9 − 140 = −131.

The discriminant is negative, there are no roots. The last equation left is:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 1 9 = 36 − 36 = 0.

The discriminant is zero - the root will be one.

Please note that the coefficients have been written down for each equation. Yes, it’s long, yes, it’s tedious, but you won’t mix up the odds and make stupid mistakes. Choose for yourself: speed or quality.

By the way, if you get the hang of it, after a while you won’t need to write down all the coefficients. You will perform such operations in your head. Most people start doing this somewhere after 50-70 solved equations - in general, not that much.

Roots of a quadratic equation

Now let's move on to the solution itself. If the discriminant D > 0, the roots can be found using the formulas:

Basic formula for the roots of a quadratic equation

When D = 0, you can use any of these formulas - you will get the same number, which will be the answer. Finally, if D< 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

First equation:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 1 (−3) = 16.

D > 0 ⇒ the equation has two roots. Let's find them:

Second equation:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ the equation again has two roots. Let's find them

\[\begin(align) & ((x)_(1))=\frac(2+\sqrt(64))(2\cdot \left(-1 \right))=-5; \\ & ((x)_(2))=\frac(2-\sqrt(64))(2\cdot \left(-1 \right))=3. \\ \end(align)\]

Finally, the third equation:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 1 36 = 0.

D = 0 ⇒ the equation has one root. Any formula can be used. For example, the first one:

As you can see from the examples, everything is very simple. If you know the formulas and can count, there will be no problems. Most often, errors occur when substituting negative coefficients into the formula. Here again, the technique described above will help: look at the formula literally, write down each step - and very soon you will get rid of errors.

Incomplete quadratic equations

It happens that a quadratic equation is slightly different from what is given in the definition. For example:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

It is easy to notice that these equations are missing one of the terms. Such quadratic equations are even easier to solve than standard ones: they don’t even require calculating the discriminant. So, let's introduce a new concept:

The equation ax 2 + bx + c = 0 is called an incomplete quadratic equation if b = 0 or c = 0, i.e. the coefficient of the variable x or the free element is equal to zero.

Of course, a very difficult case is possible when both of these coefficients are equal to zero: b = c = 0. In this case, the equation takes the form ax 2 = 0. Obviously, such an equation has a single root: x = 0.

Let's consider the remaining cases. Let b = 0, then we obtain an incomplete quadratic equation of the form ax 2 + c = 0. Let us transform it a little:

Since arithmetic square root exists only from a non-negative number, the last equality makes sense only for (−c /a) ≥ 0. Conclusion:

  1. If in an incomplete quadratic equation of the form ax 2 + c = 0 the inequality (−c /a) ≥ 0 is satisfied, there will be two roots. The formula is given above;
  2. If (−c /a)< 0, корней нет.

As you can see, a discriminant was not required—there are no complex calculations at all in incomplete quadratic equations. In fact, it is not even necessary to remember the inequality (−c /a) ≥ 0. It is enough to express the value x 2 and see what is on the other side of the equal sign. If there is a positive number, there will be two roots. If it is negative, there will be no roots at all.

Now let's look at equations of the form ax 2 + bx = 0, in which the free element is equal to zero. Everything is simple here: there will always be two roots. It is enough to factor the polynomial:

Taking the common factor out of brackets

The product is zero when at least one of the factors is zero. This is where the roots come from. In conclusion, let’s look at a few of these equations:

Task. Solve quadratic equations:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. There are no roots, because a square cannot be equal to a negative number.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1.5; x 2 = −1.5.

Solving equations in mathematics occupies a special place. This process is preceded by many hours of studying theory, during which the student learns how to solve equations, determine their type, and brings the skill to complete automation. However, the search for roots does not always make sense, since they may simply not exist. There are special moves finding roots. In this article we will analyze the main functions, their domains of definition, as well as cases when their roots are missing.

Which equation has no roots?

An equation has no roots if there are no real arguments x for which the equation is identically true. For a non-specialist, this formulation, like most mathematical theorems and formulas, looks very vague and abstract, but this is in theory. In practice, everything becomes extremely simple. For example: the equation 0 * x = -53 has no solution, since there is no number x whose product with zero would give something other than zero.

Now we will look at the most basic types of equations.

1. Linear equation

An equation is called linear if its right and left sides are represented as linear functions: ax + b = cx + d or in generalized form kx + b = 0. Where a, b, c, d are known numbers, and x is an unknown quantity . Which equation has no roots? Examples of linear equations are presented in the illustration below.

Basically, linear equations are solved by simply transferring the number part to one part and the contents of x to another. The result is an equation of the form mx = n, where m and n are numbers, and x is an unknown. To find x, just divide both sides by m. Then x = n/m. Most linear equations have only one root, but there are cases when there are either infinitely many roots or no roots at all. When m = 0 and n = 0, the equation takes the form 0 * x = 0. The solution to such an equation will be absolutely any number.

However, what equation has no roots?

For m = 0 and n = 0, the equation has no roots in the set of real numbers. 0 * x = -1; 0 * x = 200 - these equations have no roots.

2. Quadratic equation

A quadratic equation is an equation of the form ax 2 + bx + c = 0 for a = 0. The most common solution is through the discriminant. The formula for finding the discriminant of a quadratic equation is: D = b 2 - 4 * a * c. Next there are two roots x 1.2 = (-b ± √D) / 2 * a.

For D > 0 the equation has two roots, for D = 0 it has one root. But what quadratic equation has no roots? The easiest way to observe the number of roots of a quadratic equation is by graphing the function, which is a parabola. For a > 0 the branches are directed upward, for a< 0 ветви опущены вниз. Если дискриминант отрицателен, такое квадратное уравнение не имеет корней на множестве действительных чисел.

You can also visually determine the number of roots without calculating the discriminant. To do this, you need to find the vertex of the parabola and determine in which direction the branches are directed. The x coordinate of the vertex can be determined using the formula: x 0 = -b / 2a. In this case, the y coordinate of the vertex is found by simply substituting the x 0 value into the original equation.

The quadratic equation x 2 - 8x + 72 = 0 has no roots, since it has a negative discriminant D = (-8) 2 - 4 * 1 * 72 = -224. This means that the parabola does not touch the x-axis and the function never takes the value 0, therefore, the equation has no real roots.

3. Trigonometric equations

Trigonometric functions are considered on a trigonometric circle, but can also be represented in a Cartesian coordinate system. In this article we will look at two main trigonometric functions and their equations: sinx and cosx. Since these functions form a trigonometric circle with radius 1, |sinx| and |cosx| cannot be greater than 1. So, which sinx equation has no roots? Consider the graph of the sinx function shown in the picture below.

We see that the function is symmetric and has a repetition period of 2pi. Based on this, we can say that the maximum value of this function can be 1, and the minimum -1. For example, the expression cosx = 5 will not have roots, since its absolute value is greater than one.

This is the simplest example of trigonometric equations. In fact, solving them can take many pages, at the end of which you realize that you used the wrong formula and need to start all over again. Sometimes, even if you find the roots correctly, you may forget to take into account the restrictions on OD, which is why an extra root or interval appears in the answer, and the entire answer turns into an error. Therefore, strictly follow all the restrictions, because not all roots fit into the scope of the task.

4. Systems of equations

A system of equations is a set of equations joined by curly or square brackets. The curly brackets indicate that all equations are run together. That is, if at least one of the equations does not have roots or contradicts another, the entire system has no solution. Square brackets indicate the word "or". This means that if at least one of the equations of the system has a solution, then the entire system has a solution.

The answer of the system c is the totality of all the roots of the individual equations. And systems with curly braces have only common roots. Systems of equations can include completely different functions, so such complexity does not allow us to immediately say which equation does not have roots.

Found in problem books and textbooks different types equations: those that have roots and those that do not. First of all, if you can’t find the roots, don’t think that there are none at all. Perhaps you made a mistake somewhere, then you just need to carefully double-check your decision.

We looked at the most basic equations and their types. Now you can tell which equation has no roots. In most cases this is not difficult to do. Achieving success in solving equations requires only attention and concentration. Practice more, it will help you navigate the material much better and faster.

So, the equation has no roots if:

  • V linear equation mx = n value m = 0 and n = 0;
  • in a quadratic equation, if the discriminant is less than zero;
  • V trigonometric equation of the form cosx = m / sinx = n, if |m| > 0, |n| > 0;
  • in a system of equations with curly brackets, if at least one equation has no roots, and with square brackets, if all equations have no roots.

Quadratic equations. Discriminant. Solution, examples.

Attention!
There are additional
materials in Special Section 555.
For those who are very "not very..."
And for those who “very much…”)

Types of quadratic equations

What is a quadratic equation? What does it look like? In term quadratic equation the keyword is "square". This means that in the equation Necessarily there must be an x ​​squared. In addition to it, the equation may (or may not!) contain just X (to the first power) and just a number (free member). And there should be no X's to a power greater than two.

In mathematical terms, a quadratic equation is an equation of the form:

Here a, b and c- some numbers. b and c- absolutely any, but A– anything other than zero. For example:

Here A =1; b = 3; c = -4

Here A =2; b = -0,5; c = 2,2

Here A =-3; b = 6; c = -18

Well, you understand...

In these quadratic equations on the left there is complete set members. X squared with a coefficient A, x to the first power with coefficient b And free member s.

Such quadratic equations are called full.

What if b= 0, what do we get? We have X will be lost to the first power. This happens when multiplied by zero.) It turns out, for example:

5x 2 -25 = 0,

2x 2 -6x=0,

-x 2 +4x=0

Etc. And if both coefficients b And c are equal to zero, then it’s even simpler:

2x 2 =0,

-0.3x 2 =0

Such equations where something is missing are called incomplete quadratic equations. Which is quite logical.) Please note that x squared is present in all equations.

By the way, why A can't be equal to zero? And you substitute instead A zero.) Our X squared will disappear! The equation will become linear. And the solution is completely different...

That's all the main types of quadratic equations. Complete and incomplete.

Solving quadratic equations.

Solving complete quadratic equations.

Quadratic equations are easy to solve. According to formulas and clear simple rules. At the first stage it is necessary given equation lead to standard view, i.e. to the form:

If the equation is already given to you in this form, you do not need to do the first stage.) The main thing is to correctly determine all the coefficients, A, b And c.

The formula for finding the roots of a quadratic equation looks like this:

The expression under the root sign is called discriminant. But more about him below. As you can see, to find X, we use only a, b and c. Those. coefficients from a quadratic equation. Just carefully substitute the values a, b and c We calculate into this formula. Let's substitute with your own signs! For example, in the equation:

A =1; b = 3; c= -4. Here we write it down:

The example is almost solved:

This is the answer.

It's very simple. And what, you think it’s impossible to make a mistake? Well, yes, how...

The most common mistakes are confusion with sign values a, b and c. Or rather, not with their signs (where to get confused?), but with the substitution of negative values ​​into the formula for calculating the roots. What helps here is a detailed recording of the formula with specific numbers. If there are problems with calculations, do that!

Suppose we need to solve the following example:

Here a = -6; b = -5; c = -1

Let's say you know that you rarely get answers the first time.

Well, don't be lazy. It will take about 30 seconds to write an extra line. And the number of errors will decrease sharply. So we write in detail, with all the brackets and signs:

It seems incredibly difficult to write out so carefully. But it only seems so. Give it a try. Well, or choose. What's better, fast or right? Besides, I will make you happy. After a while, there will be no need to write everything down so carefully. It will work out right on its own. Especially if you use practical techniques that are described below. This evil example with a bunch of minuses can be solved easily and without errors!

But, often, quadratic equations look slightly different. For example, like this:

Did you recognize it?) Yes! This incomplete quadratic equations.

Solving incomplete quadratic equations.

They can also be solved using a general formula. You just need to understand correctly what they are equal to here. a, b and c.

Have you figured it out? In the first example a = 1; b = -4; A c? It's not there at all! Well yes, that's right. In mathematics this means that c = 0 ! That's it. Substitute zero into the formula instead c, and we will succeed. Same with the second example. Only we don’t have zero here With, A b !

But incomplete quadratic equations can be solved much more simply. Without any formulas. Let's consider the first incomplete equation. What can you do on the left side? You can take X out of brackets! Let's take it out.

So what of this? And the fact that the product equals zero if and only if any of the factors equals zero! Don't believe me? Okay, then come up with two non-zero numbers that, when multiplied, will give zero!
Doesn't work? That's it...
Therefore, we can confidently write: x 1 = 0, x 2 = 4.

All. These will be the roots of our equation. Both are suitable. When substituting any of them into the original equation, we get the correct identity 0 = 0. As you can see, the solution is much simpler than using the general formula. Let me note, by the way, which X will be the first and which will be the second - it is absolutely indifferent. It is convenient to write in order, x 1- what is smaller and x 2- that which is greater.

The second equation can also be solved simply. Move 9 to the right side. We get:

All that remains is to extract the root from 9, and that’s it. It will turn out:

Also two roots . x 1 = -3, x 2 = 3.

This is how all incomplete quadratic equations are solved. Either by placing X out of brackets, or by simply moving the number to the right and then extracting the root.
It is extremely difficult to confuse these techniques. Simply because in the first case you will have to extract the root of X, which is somehow incomprehensible, and in the second case there is nothing to take out of brackets...

Discriminant. Discriminant formula.

Magic word discriminant ! Rarely a high school student has not heard this word! The phrase “we solve through a discriminant” inspires confidence and reassurance. Because there is no need to expect tricks from the discriminant! It is simple and trouble-free to use.) I remind you of the most general formula for solving any quadratic equations:

The expression under the root sign is called a discriminant. Typically the discriminant is denoted by the letter D. Discriminant formula:

D = b 2 - 4ac

And what is so remarkable about this expression? Why did it deserve a special name? What the meaning of the discriminant? After all -b, or 2a in this formula they don’t specifically call it anything... Letters and letters.

Here's the thing. When solving a quadratic equation using this formula, it is possible only three cases.

1. The discriminant is positive. This means the root can be extracted from it. Whether the root is extracted well or poorly is another question. What is important is what is extracted in principle. Then your quadratic equation has two roots. Two different solutions.

2. The discriminant is zero. Then you will have one solution. Since adding or subtracting zero in the numerator does not change anything. Strictly speaking, this is not one root, but two identical. But, in a simplified version, it is customary to talk about one solution.

3. The discriminant is negative. The square root of a negative number cannot be taken. Oh well. This means there are no solutions.

Honestly speaking, when simple solution quadratic equations, the concept of a discriminant is not particularly required. We substitute the values ​​of the coefficients into the formula and count. Everything happens there by itself, two roots, one, and none. However, when solving more complex tasks, without knowledge meaning and formula of the discriminant can't get by. Especially in equations with parameters. Such equations are aerobatics for the State Examination and the Unified State Examination!)

So, how to solve quadratic equations through the discriminant you remembered. Or you learned, which is also not bad.) You know how to correctly determine a, b and c. Do you know how? attentively substitute them into the root formula and attentively count the result. Did you understand that keyword Here - attentively?

Now take note of practical techniques that dramatically reduce the number of errors. The same ones that are due to inattention... For which it later becomes painful and offensive...

First appointment . Don’t be lazy before solving a quadratic equation and bring it to standard form. What does this mean?
Let's say that after all the transformations you get the following equation:

Don't rush to write the root formula! You'll almost certainly get the odds mixed up a, b and c. Construct the example correctly. First, X squared, then without square, then the free term. Like this:

And again, don’t rush! A minus in front of an X squared can really upset you. It's easy to forget... Get rid of the minus. How? Yes, as taught in the previous topic! We need to multiply the entire equation by -1. We get:

But now you can safely write down the formula for the roots, calculate the discriminant and finish solving the example. Decide for yourself. You should now have roots 2 and -1.

Reception second. Check the roots! According to Vieta's theorem. Don't be scared, I'll explain everything! Checking last equation. Those. the one we used to write down the root formula. If (as in this example) the coefficient a = 1, checking the roots is easy. It is enough to multiply them. The result should be a free member, i.e. in our case -2. Please note, not 2, but -2! Free member with your sign . If it doesn’t work out, it means they’ve already screwed up somewhere. Look for the error.

If it works, you need to add the roots. Last and final check. The coefficient should be b With opposite familiar. In our case -1+2 = +1. A coefficient b, which is before the X, is equal to -1. So, everything is correct!
It’s a pity that this is so simple only for examples where x squared is pure, with a coefficient a = 1. But at least check in such equations! There will be fewer and fewer errors.

Reception third . If your equation has fractional coefficients, get rid of the fractions! Multiply the equation by common denominator, as described in the lesson "How to solve equations? Identical transformations." When working with fractions, errors keep creeping in for some reason...

By the way, I promised to simplify the evil example with a bunch of minuses. Please! Here he is.

In order not to get confused by the minuses, we multiply the equation by -1. We get:

That's it! Solving is a pleasure!

So, let's summarize the topic.

Practical advice:

1. Before solving, we bring the quadratic equation to standard form and build it Right.

2. If there is a negative coefficient in front of the X squared, we eliminate it by multiplying the entire equation by -1.

3. If the coefficients are fractional, we eliminate the fractions by multiplying the entire equation by the corresponding factor.

4. If x squared is pure, its coefficient is equal to one, the solution can be easily verified using Vieta’s theorem. Do it!

Now we can decide.)

Solve equations:

8x 2 - 6x + 1 = 0

x 2 + 3x + 8 = 0

x 2 - 4x + 4 = 0

(x+1) 2 + x + 1 = (x+1)(x+2)

Answers (in disarray):

x 1 = 0
x 2 = 5

x 1.2 =2

x 1 = 2
x 2 = -0.5

x - any number

x 1 = -3
x 2 = 3

no solutions

x 1 = 0.25
x 2 = 0.5

Does everything fit? Great! Quadratic equations are not your headache. The first three worked, but the rest didn’t? Then the problem is not with quadratic equations. The problem is in identical transformations of equations. Take a look at the link, it's helpful.

Doesn't quite work out? Or does it not work out at all? Then Section 555 will help you. All these examples are broken down there. Shown main errors in the solution. Of course, we also talk about the use of identical transformations in the solution different equations. Helps a lot!

If you like this site...

By the way, I have a couple more interesting sites for you.)

You can practice solving examples and find out your level. Testing with instant verification. Let's learn - with interest!)

You can get acquainted with functions and derivatives.

Quadratic equation problems are also studied in school curriculum and in universities. By them we mean equations of the form a*x^2 + b*x + c = 0, where x- variable, a,b,c – constants; a<>0 . The task is to find the roots of the equation.

Geometric meaning of quadratic equation

The graph of a function that is represented by a quadratic equation is a parabola. The solutions (roots) of a quadratic equation are the points of intersection of the parabola with the abscissa (x) axis. It follows that there are three possible cases:
1) the parabola has no points of intersection with the abscissa axis. This means that it is in the upper plane with branches up or the bottom with branches down. In such cases, the quadratic equation has no real roots (it has two complex roots).

2) the parabola has one point of intersection with the Ox axis. Such a point is called the vertex of the parabola, and the quadratic equation at it acquires its minimum or maximum value. In this case, the quadratic equation has one real root (or two identical roots).

3) Last case in practice it is more interesting - there are two points of intersection of the parabola with the abscissa axis. This means that there are two real roots of the equation.

Based on the analysis of the coefficients of the powers of the variables, interesting conclusions can be drawn about the placement of the parabola.

1) If the coefficient a is greater than zero, then the parabola’s branches are directed upward; if it is negative, the parabola’s branches are directed downward.

2) If the coefficient b is greater than zero, then the vertex of the parabola lies in the left half-plane if it takes negative value- then on the right.

Derivation of the formula for solving a quadratic equation

Let's transfer the constant from the quadratic equation

for the equal sign, we get the expression

Multiply both sides by 4a

To get left perfect square add b^2 to both sides and carry out the transformation

From here we find

Formula for the discriminant and roots of a quadratic equation

The discriminant is the value of the radical expression. If it is positive, then the equation has two real roots, calculated by the formula When the discriminant is zero, the quadratic equation has one solution (two coinciding roots), which can be easily obtained from the above formula for D=0. When the discriminant is negative, the equation has no real roots. However, solutions to the quadratic equation are found in the complex plane, and their value is calculated using the formula

Vieta's theorem

Let's consider two roots of a quadratic equation and construct a quadratic equation on their basis. Vieta's theorem itself easily follows from the notation: if we have a quadratic equation of the form then the sum of its roots is equal to the coefficient p taken with the opposite sign, and the product of the roots of the equation is equal to the free term q. The formula for the above will look like If in a classical equation the constant a is nonzero, then you need to divide the entire equation by it, and then apply Vieta’s theorem.

Factoring quadratic equation schedule

Let the task be set: factor a quadratic equation. To do this, we first solve the equation (find the roots). Next, we substitute the found roots into the expansion formula for the quadratic equation. This will solve the problem.

Quadratic equation problems

Task 1. Find the roots of a quadratic equation

x^2-26x+120=0 .

Solution: Write down the coefficients and substitute them into the discriminant formula

Root of given value is equal to 14, it is easy to find with a calculator, or remember with frequent use, however, for convenience, at the end of the article I will give you a list of squares of numbers that can often be encountered in such problems.
We substitute the found value into the root formula

and we get

Task 2. Solve the equation

2x 2 +x-3=0.

Solution: We have a complete quadratic equation, write out the coefficients and find the discriminant


Using known formulas we find the roots of the quadratic equation

Task 3. Solve the equation

9x 2 -12x+4=0.

Solution: We have a complete quadratic equation. Determining the discriminant

We got a case where the roots coincide. Find the values ​​of the roots using the formula

Task 4. Solve the equation

x^2+x-6=0 .

Solution: In cases where there are small coefficients for x, it is advisable to apply Vieta’s theorem. By its condition we obtain two equations

From the second condition we find that the product must be equal to -6. This means that one of the roots is negative. We have the following possible pair of solutions (-3;2), (3;-2) . Taking into account the first condition, we reject the second pair of solutions.
The roots of the equation are equal

Problem 5. Find the lengths of the sides of a rectangle if its perimeter is 18 cm and its area is 77 cm 2.

Solution: Half the perimeter of a rectangle is equal to the sum of its adjacent sides. Let's denote x as the larger side, then 18-x is its smaller side. The area of ​​the rectangle is equal to the product of these lengths:
x(18-x)=77;
or
x 2 -18x+77=0.
Let's find the discriminant of the equation

Calculating the roots of the equation

If x=11, That 18's=7 , the opposite is also true (if x=7, then 21's=9).

Problem 6. Factor the quadratic equation 10x 2 -11x+3=0.

Solution: Let's calculate the roots of the equation, to do this we find the discriminant

We substitute the found value into the root formula and calculate

We apply the formula for decomposing a quadratic equation by roots

Opening the brackets we obtain an identity.

Quadratic equation with parameter

Example 1. At what parameter values A , does the equation (a-3)x 2 + (3-a)x-1/4=0 have one root?

Solution: By direct substitution of the value a=3 we see that it has no solution. Next, we will use the fact that with a zero discriminant the equation has one root of multiplicity 2. Let's write out the discriminant

Let's simplify it and equate it to zero

We have obtained a quadratic equation with respect to the parameter a, the solution of which can be easily obtained using Vieta’s theorem. The sum of the roots is 7, and their product is 12. By simple search we establish that the numbers 3,4 will be the roots of the equation. Since we already rejected the solution a=3 at the beginning of the calculations, the only correct one will be - a=4. Thus, when a=4 the equation has one root.

Example 2. At what parameter values A , equation a(a+3)x^2+(2a+6)x-3a-9=0 has more than one root?

Solution: Let's first consider the singular points, they will be the values ​​a=0 and a=-3. When a=0, the equation will be simplified to the form 6x-9=0; x=3/2 and there will be one root. For a= -3 we obtain the identity 0=0.
Let's calculate the discriminant

and find the value of a at which it is positive

From the first condition we get a>3. For the second, we find the discriminant and roots of the equation


Let us determine the intervals where the function takes positive values. By substituting the point a=0 we get 3>0 . So, outside the interval (-3;1/3) the function is negative. Don't forget the point a=0, which should be excluded because the original equation has one root in it.
As a result, we obtain two intervals that satisfy the conditions of the problem

There will be many similar tasks in practice, try to figure out the tasks yourself and do not forget to take into account the conditions that are mutually exclusive. Study well the formulas for solving quadratic equations; they are often needed in calculations in various problems and sciences.