Examples for finding the common denominator. Posts tagged "lowest common denominator"

The denominator of the arithmetic fraction a / b is the number b, which shows the size of the fractions of a unit from which the fraction is composed. The denominator of the algebraic fraction A / B is called algebraic expression B. To perform arithmetic with fractions, they must be reduced to their lowest common denominator.

You will need

  • To work with algebraic fractions and find the lowest common denominator, you need to know how to factor polynomials.

Instructions

Let's consider reducing two arithmetic fractions n/m and s/t to the least common denominator, where n, m, s, t are integers. It is clear that these two fractions can be reduced to any denominator divisible by m and t. But they try to lead to the lowest common denominator. It is equal to the least common multiple of the denominators m and t of the given fractions. The least multiple (LMK) of a number is the smallest divisible by all given numbers at the same time. Those. in our case, we need to find the least common multiple of the numbers m and t. Denoted as LCM (m, t). Next, the fractions are multiplied by the corresponding ones: (n/m) * (LCM (m, t) / m), (s/t) * (LCM (m, t) / t).

Let's find the lowest common denominator of three fractions: 4/5, 7/8, 11/14. First, let's expand the denominators 5, 8, 14: 5 = 1 * 5, 8 = 2 * 2 * 2 = 2^3, 14 = 2 * 7. Next, calculate the LCM (5, 8, 14) by multiplying all the numbers included into at least one of the expansions. LCM (5, 8, 14) = 5 * 2^3 * 7 = 280. Note that if a factor appears in the expansion of several numbers (factor 2 in the expansion of denominators 8 and 14), then take the factor in to a greater extent(2^3 in our case).

So, the general one is received. It is equal to 280 = 5 * 56 = 8 * 35 = 14 * 20. Here we get the numbers by which we must multiply the fractions with the corresponding denominators in order to bring them to the lowest common denominator. We get 4/5 = 56 * (4/5) = 224/280, 7/8 = 35 * (7/8) = 245/280, 11/14 = 20 * (11/14) = 220/280.

Reducing to the lowest common denominator algebraic fractions performed by analogy with arithmetic. For clarity, let's look at the problem using an example. Let two fractions (2 * x) / (9 * y^2 + 6 * y + 1) and (x^2 + 1) / (3 * y^2 + 4 * y + 1) be given. Let's factorize both denominators. Note that the denominator of the first fraction is perfect square: 9 * y^2 + 6 * y + 1 = (3 * y + 1)^2. For

I originally wanted to include common denominator techniques in the Adding and Subtracting Fractions section. But there turned out to be so much information, and its importance is so great (after all, not only numerical fractions have common denominators), that it is better to study this issue separately.

So let's say we have two fractions with different denominators. And we want to make sure that the denominators become the same. The basic property of a fraction comes to the rescue, which, let me remind you, sounds like this:

A fraction will not change if its numerator and denominator are multiplied by the same number other than zero.

Thus, if you choose the factors correctly, the denominators of the fractions will become equal - this process is called reduction to a common denominator. And the required numbers, “evening out” the denominators, are called additional factors.

Why do we need to reduce fractions to a common denominator? Here are just a few reasons:

  1. Adding and subtracting fractions with different denominators. There is no other way to perform this operation;
  2. Comparing fractions. Sometimes reduction to a common denominator greatly simplifies this task;
  3. Solving problems involving fractions and percentages. Percentages are, in fact, ordinary expressions that contain fractions.

There are many ways to find numbers that, when multiplied by them, will make the denominators of fractions equal. We will consider only three of them - in order of increasing complexity and, in a sense, effectiveness.

Criss-cross multiplication

The simplest and reliable way, which is guaranteed to equalize the denominators. We will act “in a headlong manner”: we multiply the first fraction by the denominator of the second fraction, and the second by the denominator of the first. As a result, the denominators of both fractions will become equal to the product of the original denominators. Take a look:

As additional factors, consider the denominators of neighboring fractions. We get:

Yes, it's that simple. If you are just starting to study fractions, it is better to work using this method - this way you will insure yourself against many mistakes and are guaranteed to get the result.

The only drawback of this method is that you have to do a lot of counting, because the denominators are multiplied “over and over”, and the result can be very big numbers. This is the price to pay for reliability.

Common Divisor Method

This technique helps to significantly reduce calculations, but, unfortunately, it is used quite rarely. The method is as follows:

  1. Before you go straight ahead (i.e., using the criss-cross method), take a look at the denominators. Perhaps one of them (the one that is larger) is divided into the other.
  2. The number resulting from this division will be an additional factor for the fraction with a smaller denominator.
  3. In this case, a fraction with a large denominator does not need to be multiplied by anything at all - this is where the savings lie. At the same time, the probability of error is sharply reduced.

Task. Find the meanings of the expressions:

Note that 84: 21 = 4; 72: 12 = 6. Since in both cases one denominator is divided without a remainder by the other, we use the method of common factors. We have:

Note that the second fraction was not multiplied by anything at all. In fact, we cut the amount of computation in half!

By the way, I didn’t take the fractions in this example by chance. If you're interested, try counting them using the criss-cross method. After reduction, the answers will be the same, but there will be much more work.

This is the power of the common divisors method, but, again, it can only be used when one of the denominators is divided by the other without a remainder. Which happens quite rarely.

Least common multiple method

When we reduce fractions to a common denominator, we are essentially trying to find a number that is divisible by each denominator. Then we bring the denominators of both fractions to this number.

There are a lot of such numbers, and the smallest of them will not necessarily be equal to the direct product of the denominators of the original fractions, as is assumed in the “criss-cross” method.

For example, for denominators 8 and 12, the number 24 is quite suitable, since 24: 8 = 3; 24: 12 = 2. This number is much less product 8 12 = 96.

The smallest number that is divisible by each of the denominators is called their least common multiple (LCM).

Notation: The least common multiple of a and b is denoted by LCM(a ; b) . For example, LCM(16, 24) = 48 ; LCM(8; 12) = 24 .

If you manage to find such a number, the total amount of calculations will be minimal. Look at the examples:

Task. Find the meanings of the expressions:

Note that 234 = 117 2; 351 = 117 3. Factors 2 and 3 are coprime (have no common factors other than 1), and factor 117 is common. Therefore LCM(234, 351) = 117 2 3 = 702.

Likewise, 15 = 5 3; 20 = 5 · 4. Factors 3 and 4 are coprime, and factor 5 is common. Therefore LCM(15, 20) = 5 3 4 = 60.

Now let's bring the fractions to common denominators:

Notice how useful it was to factorize the original denominators:

  1. Having discovered identical factors, we immediately arrived at the least common multiple, which, generally speaking, is a non-trivial problem;
  2. From the resulting expansion you can find out which factors are “missing” in each fraction. For example, 234 · 3 = 702, therefore, for the first fraction the additional factor is 3.

To appreciate how much of a difference the least common multiple method makes, try calculating these same examples using the criss-cross method. Of course, without a calculator. I think after this comments will be unnecessary.

Don't think that there won't be such complex fractions in the real examples. They meet all the time, and the above tasks are not the limit!

The only problem is how to find this very NOC. Sometimes everything can be found in a few seconds, literally “by eye,” but in general this is a complex computational task that requires separate consideration. We won't touch on that here.


This article explains how to find the smallest common denominator And how to reduce fractions to a common denominator. First, the definitions of common denominator of fractions and least common denominator are given, and it is shown how to find the common denominator of fractions. Below is a rule for reducing fractions to a common denominator and examples of the application of this rule are considered. In conclusion, examples of bringing three or more fractions to a common denominator are discussed.

Page navigation.

What is called reducing fractions to a common denominator?

Now we can say what it is to reduce fractions to a common denominator. Reducing fractions to a common denominator- This is the multiplication of the numerators and denominators of given fractions by such additional factors that the result is fractions with the same denominators.

Common denominator, definition, examples

Now it's time to define the common denominator of fractions.

In other words, the common denominator of a certain set ordinary fractions is any natural number, which is divisible by all denominators of these fractions.

From the stated definition it follows that a given set of fractions has infinitely many common denominators, since there is an infinite number of common multiples of all denominators of the original set of fractions.

Determining the common denominator of fractions allows you to find the common denominators of given fractions. Let, for example, given the fractions 1/4 and 5/6, their denominators are 4 and 6, respectively. Positive common multiples of the numbers 4 and 6 are the numbers 12, 24, 36, 48, ... Any of these numbers is a common denominator of the fractions 1/4 and 5/6.

To consolidate the material, consider the solution to the following example.

Example.

Can the fractions 2/3, 23/6 and 7/12 be reduced to a common denominator of 150?

Solution.

To answer the question posed, we need to find out whether the number 150 is a common multiple of the denominators 3, 6 and 12. To do this, let’s check whether 150 is divisible by each of these numbers (if necessary, see the rules and examples of dividing natural numbers, as well as the rules and examples of dividing natural numbers with a remainder): 150:3=50, 150:6=25, 150: 12=12 (remaining 6) .

So, 150 is not evenly divisible by 12, therefore 150 is not a common multiple of 3, 6, and 12. Therefore, the number 150 cannot be the common denominator of the original fractions.

Answer:

It is forbidden.

Lowest common denominator, how to find it?

In the set of numbers that are common denominators of given fractions, there is a smallest natural number, which is called the least common denominator. Let us formulate the definition of the lowest common denominator of these fractions.

Definition.

Lowest common denominator- This smallest number, from all common denominators of these fractions.

It remains to deal with the question of how to find the least common divisor.

Since is the smallest positive common divisor of a given set of numbers, then the LCM of the denominators of the given fractions is the least common denominator of the given fractions.

Thus, finding the lowest common denominator of fractions comes down to the denominators of those fractions. Let's look at the solution to the example.

Example.

Find the lowest common denominator of the fractions 3/10 and 277/28.

Solution.

The denominators of these fractions are 10 and 28. The desired lowest common denominator is found as the LCM of the numbers 10 and 28. In our case it’s easy: since 10=2·5, and 28=2·2·7, then LCM(15, 28)=2·2·5·7=140.

Answer:

140 .

How to reduce fractions to a common denominator? Rule, examples, solutions

Common fractions usually result in a lowest common denominator. We will now write down a rule that explains how to reduce fractions to their lowest common denominator.

Rule for reducing fractions to lowest common denominator consists of three steps:

  • First, find the lowest common denominator of the fractions.
  • Second, an additional factor is calculated for each fraction by dividing the lowest common denominator by the denominator of each fraction.
  • Third, the numerator and denominator of each fraction are multiplied by its additional factor.

Let us apply the stated rule to solve the following example.

Example.

Reduce the fractions 5/14 and 7/18 to their lowest common denominator.

Solution.

Let's perform all the steps of the algorithm for reducing fractions to the lowest common denominator.

First we find the least common denominator, which is equal to the least common multiple of the numbers 14 and 18. Since 14=2·7 and 18=2·3·3, then LCM(14, 18)=2·3·3·7=126.

Now we calculate additional factors with the help of which the fractions 5/14 and 7/18 will be reduced to the denominator 126. For the fraction 5/14 the additional factor is 126:14=9, and for the fraction 7/18 the additional factor is 126:18=7.

It remains to multiply the numerators and denominators of the fractions 5/14 and 7/18 by additional factors of 9 and 7, respectively. We have and .

So, reducing the fractions 5/14 and 7/18 to the lowest common denominator is complete. The resulting fractions were 45/126 and 49/126.

To reduce fractions to the lowest common denominator, you need to: 1) find the least common multiple of the denominators of the given fractions, it will be the lowest common denominator. 2) find an additional factor for each fraction by dividing the new denominator by the denominator of each fraction. 3) multiply the numerator and denominator of each fraction by its additional factor.

Examples. Reduce the following fractions to their lowest common denominator.

We find the least common multiple of the denominators: LCM(5; 4) = 20, since 20 is the smallest number that is divisible by both 5 and 4. Find for the 1st fraction an additional factor 4 (20 : 5=4). For the 2nd fraction the additional factor is 5 (20 : 4=5). We multiply the numerator and denominator of the 1st fraction by 4, and the numerator and denominator of the 2nd fraction by 5. We have reduced these fractions to the lowest common denominator ( 20 ).

The lowest common denominator of these fractions is the number 8, since 8 is divisible by 4 and itself. There will be no additional factor for the 1st fraction (or we can say that it is equal to one), for the 2nd fraction the additional factor is 2 (8 : 4=2). We multiply the numerator and denominator of the 2nd fraction by 2. We have reduced these fractions to the lowest common denominator ( 8 ).

These fractions are not irreducible.

Let's reduce the 1st fraction by 4, and reduce the 2nd fraction by 2. ( see examples on reducing ordinary fractions: Sitemap → 5.4.2. Examples of reducing common fractions). Find the LOC(16 ; 20)=2 4 · 5=16· 5=80. The additional multiplier for the 1st fraction is 5 (80 : 16=5). The additional factor for the 2nd fraction is 4 (80 : 20=4). We multiply the numerator and denominator of the 1st fraction by 5, and the numerator and denominator of the 2nd fraction by 4. We have reduced these fractions to the lowest common denominator ( 80 ).

We find the lowest common denominator NCD(5 ; 6 and 15)=NOK(5 ; 6 and 15)=30. The additional factor to the 1st fraction is 6 (30 : 5=6), the additional factor to the 2nd fraction is 5 (30 : 6=5), the additional factor to the 3rd fraction is 2 (30 : 15=2). We multiply the numerator and denominator of the 1st fraction by 6, the numerator and denominator of the 2nd fraction by 5, the numerator and denominator of the 3rd fraction by 2. We have reduced these fractions to the lowest common denominator ( 30 ).

Page 1 of 1 1

In this lesson we will look at reducing fractions to a common denominator and solve problems on this topic. Let us define the concept of a common denominator and an additional factor, recall the mutual prime numbers. Let's define the concept of the lowest common denominator (LCD) and solve a number of problems to find it.

Topic: Adding and subtracting fractions with different denominators

Lesson: Reducing fractions to a common denominator

Repetition. The main property of a fraction.

If the numerator and denominator of a fraction are multiplied or divided by the same natural number, you get an equal fraction.

For example, the numerator and denominator of a fraction can be divided by 2. We get the fraction. This operation is called fraction reduction. You can also perform the reverse transformation by multiplying the numerator and denominator of the fraction by 2. In this case, we say that we have reduced the fraction to a new denominator. The number 2 is called an additional factor.

Conclusion. A fraction can be reduced to any denominator that is a multiple of the denominator of the given fraction. To bring a fraction to a new denominator, its numerator and denominator are multiplied by an additional factor.

1. Reduce the fraction to the denominator 35.

The number 35 is a multiple of 7, that is, 35 is divisible by 7 without a remainder. This means that this transformation is possible. Let's find an additional factor. To do this, divide 35 by 7. We get 5. Multiply the numerator and denominator of the original fraction by 5.

2. Reduce the fraction to denominator 18.

Let's find an additional factor. To do this, divide the new denominator by the original one. We get 3. Multiply the numerator and denominator of this fraction by 3.

3. Reduce the fraction to a denominator of 60.

Dividing 60 by 15 gives an additional factor. It is equal to 4. Multiply the numerator and denominator by 4.

4. Reduce the fraction to the denominator 24

In simple cases, the reduction to a new denominator is performed mentally. It is only customary to indicate the additional factor behind a bracket slightly to the right and above the original fraction.

A fraction can be reduced to a denominator of 15 and a fraction can be reduced to a denominator of 15. Fractions also have a common denominator of 15.

The common denominator of fractions can be any common multiple of their denominators. For simplicity, fractions are reduced to their lowest common denominator. It is equal to the least common multiple of the denominators of the given fractions.

Example. Reduce to the lowest common denominator of the fraction and .

First, let's find the least common multiple of the denominators of these fractions. This number is 12. Let's find an additional factor for the first and second fractions. To do this, divide 12 by 4 and 6. Three is an additional factor for the first fraction, and two is for the second. Let's bring the fractions to the denominator 12.

We brought the fractions to a common denominator, that is, we found equal fractions that have the same denominator.

Rule. To reduce fractions to their lowest common denominator, you must

First, find the least common multiple of the denominators of these fractions, it will be their least common denominator;

Secondly, divide the lowest common denominator by the denominators of these fractions, i.e. find an additional factor for each fraction.

Third, multiply the numerator and denominator of each fraction by its additional factor.

a) Reduce the fractions and to a common denominator.

The lowest common denominator is 12. The additional factor for the first fraction is 4, for the second - 3. We reduce the fractions to the denominator 24.

b) Reduce the fractions and to a common denominator.

The lowest common denominator is 45. Dividing 45 by 9 by 15 gives 5 and 3, respectively. We reduce the fractions to the denominator 45.

c) Reduce the fractions and to a common denominator.

The common denominator is 24. Additional factors are 2 and 3, respectively.

Sometimes it can be difficult to verbally find the least common multiple of the denominators of given fractions. Then the common denominator and additional factors are found by decomposing into prime factors.

Reduce the fractions and to a common denominator.

Let's factor the numbers 60 and 168 into prime factors. Let's write out the expansion of the number 60 and add the missing factors 2 and 7 from the second expansion. Let's multiply 60 by 14 and get a common denominator of 840. The additional factor for the first fraction is 14. The additional factor for the second fraction is 5. Let's bring the fractions to a common denominator of 840.

References

1. Vilenkin N.Ya., Zhokhov V.I., Chesnokov A.S. and others. Mathematics 6. - M.: Mnemosyne, 2012.

2. Merzlyak A.G., Polonsky V.V., Yakir M.S. Mathematics 6th grade. - Gymnasium, 2006.

3. Depman I.Ya., Vilenkin N.Ya. Behind the pages of a mathematics textbook. - Enlightenment, 1989.

4. Rurukin A.N., Tchaikovsky I.V. Assignments for the mathematics course for grades 5-6. - ZSh MEPhI, 2011.

5. Rurukin A.N., Sochilov S.V., Tchaikovsky K.G. Mathematics 5-6. A manual for 6th grade students at the MEPhI correspondence school. - ZSh MEPhI, 2011.

6. Shevrin L.N., Gein A.G., Koryakov I.O. and others. Mathematics: Textbook-interlocutor for grades 5-6 high school. Math teacher's library. - Enlightenment, 1989.

You can download the books specified in clause 1.2. of this lesson.

Homework

Vilenkin N.Ya., Zhokhov V.I., Chesnokov A.S. and others. Mathematics 6. - M.: Mnemosyne, 2012. (link see 1.2)

Homework: No. 297, No. 298, No. 300.

Other tasks: No. 270, No. 290