Calculatrice de nœuds et de nok avec solution. Plus grand commun diviseur et plus petit commun multiple. Calculateur en ligne

Définition. Le plus grand entier naturel, par lequel les nombres a et b sont divisés sans reste, est appelé plus grand diviseur commun (PGCD) ces chiffres.

Trouvons le plus grand diviseur commun numéros 24 et 35.
Les diviseurs de 24 sont les nombres 1, 2, 3, 4, 6, 8, 12, 24 et les diviseurs de 35 sont les nombres 1, 5, 7, 35.
Nous voyons que les nombres 24 et 35 n'ont qu'un seul diviseur commun - le nombre 1. Ces nombres sont appelés mutuellement premier.

Définition. Les nombres naturels sont appelés mutuellement premier, si leur plus grand diviseur commun (PGCD) est 1.

Plus grand diviseur commun (PGCD) peut être trouvé sans écrire tous les diviseurs des nombres donnés.

En factorisant les nombres 48 et 36, on obtient :
48 = 2 * 2 * 2 * 2 * 3, 36 = 2 * 2 * 3 * 3.
Parmi les facteurs inclus dans le développement du premier de ces nombres, nous biffons ceux qui ne sont pas inclus dans le développement du deuxième nombre (c'est-à-dire deux deux).
Les facteurs restants sont 2 * 2 * 3. Leur produit est égal à 12. Ce nombre est le plus grand diviseur commun des nombres 48 et 36. On trouve également le plus grand diviseur commun de trois nombres ou plus.

Trouver plus grand diviseur commun

2) parmi les facteurs inclus dans le développement d'un de ces nombres, rayer ceux qui ne sont pas inclus dans le développement d'autres nombres ;
3) trouver le produit des facteurs restants.

Si tous les nombres donnés sont divisibles par l’un d’eux, alors ce nombre est plus grand diviseur commun chiffres donnés.
Par exemple, le plus grand diviseur commun des nombres 15, 45, 75 et 180 est le nombre 15, puisque tous les autres nombres sont divisibles par lui : 45, 75 et 180.

Plus petit commun multiple (LCM)

Définition. Plus petit commun multiple (LCM) Les nombres naturels a et b sont le plus petit nombre naturel qui est un multiple de a et b. Le plus petit commun multiple (LCM) des nombres 75 et 60 peut être trouvé sans écrire les multiples de ces nombres d'affilée. Pour ce faire, décomposons 75 et 60 en facteurs premiers: 75 = 3 * 5 * 5, et 60 = 2 * 2 * 3 * 5.
Écrivons les facteurs inclus dans le développement du premier de ces nombres et ajoutons-y les facteurs manquants 2 et 2 du développement du deuxième nombre (c'est-à-dire que nous combinons les facteurs).
On obtient cinq facteurs 2 * 2 * 3 * 5 * 5 dont le produit est 300. Ce nombre est le plus petit commun multiple des nombres 75 et 60.

Ils trouvent également le plus petit commun multiple de trois nombres ou plus.

À trouver le plus petit commun multiple plusieurs nombres naturels, il vous faut :
1) les factoriser en facteurs premiers ;
2) noter les facteurs inclus dans le développement de l'un des nombres ;
3) ajoutez-y les facteurs manquants issus des développements des nombres restants ;
4) trouver le produit des facteurs résultants.

Notez que si l’un de ces nombres est divisible par tous les autres nombres, alors ce nombre est le plus petit commun multiple de ces nombres.
Par exemple, le plus petit commun multiple des nombres 12, 15, 20 et 60 est 60 car il est divisible par tous ces nombres.

Pythagore (VIe siècle avant JC) et ses élèves étudièrent la question de la divisibilité des nombres. Nombre, égal à la somme Ils appelaient tous ses diviseurs (sans le nombre lui-même) un nombre parfait. Par exemple, les nombres 6 (6 = 1 + 2 + 3), 28 (28 = 1 + 2 + 4 + 7 + 14) sont parfaits. Les prochains nombres parfaits sont 496, 8128, 33 550 336. Les Pythagoriciens ne connaissaient que les trois premiers nombres parfaits. Le quatrième - 8128 - est devenu connu au Ier siècle. n. e. Le cinquième – 33 550 336 – a été retrouvé au XVe siècle. En 1983, 27 nombres parfaits étaient déjà connus. Mais les scientifiques ne savent toujours pas s’il existe des nombres parfaits impairs ou s’il existe un nombre parfait plus grand.
L'intérêt des mathématiciens anciens pour les nombres premiers vient du fait que tout nombre est premier ou peut être représenté comme un produit. nombres premiers, c'est-à-dire que les nombres premiers sont comme des briques à partir desquelles le reste des nombres naturels est construit.
Vous avez probablement remarqué que les nombres premiers dans la série de nombres naturels apparaissent de manière inégale - dans certaines parties de la série, il y en a plus, dans d'autres, moins. Mais plus on avance dans la série de nombres, moins les nombres premiers sont courants. La question se pose : existe-t-il un dernier (le plus grand) nombre premier ? L'ancien mathématicien grec Euclide (3e siècle avant JC), dans son livre « Éléments », qui fut le principal manuel de mathématiques pendant deux mille ans, a prouvé qu'il existe une infinité de nombres premiers, c'est-à-dire que derrière chaque nombre premier se trouve un nombre premier encore plus grand. nombre.
Pour trouver les nombres premiers, un autre mathématicien grec de la même époque, Eratosthène, a mis au point cette méthode. Il a noté tous les nombres de 1 à un certain nombre, puis en a barré un, qui n'est ni un nombre premier ni un nombre composé, puis a barré d'un seul tous les nombres venant après 2 (nombres multiples de 2, c'est-à-dire 4, 6, 8, etc.). Le premier nombre restant après 2 était 3. Puis, après deux, tous les nombres suivant 3 (nombres multiples de 3, c'est-à-dire 6, 9, 12, etc.) ont été barrés. au final, seuls les nombres premiers sont restés non croisés.

Mais de nombreux nombres naturels sont également divisibles par d’autres nombres naturels.

Par exemple:

Le nombre 12 est divisible par 1, par 2, par 3, par 4, par 6, par 12 ;

Le nombre 36 est divisible par 1, par 2, par 3, par 4, par 6, par 12, par 18, par 36.

Les nombres par lesquels le nombre est divisible par un tout (pour 12 ce sont 1, 2, 3, 4, 6 et 12) sont appelés diviseurs de nombres. Diviseur d'un nombre naturel un- est un nombre naturel qui divise numéro donné un sans laisser de trace. Un nombre naturel qui a plus de deux diviseurs s'appelle composite .

Veuillez noter que les nombres 12 et 36 ont des facteurs communs. Ces nombres sont : 1, 2, 3, 4, 6, 12. Le plus grand diviseur de ces nombres est 12. Le diviseur commun de ces deux nombres un Et b- c'est le nombre par lequel les deux nombres donnés sont divisés sans reste un Et b.

Multiples communs plusieurs nombres est un nombre divisible par chacun de ces nombres. Par exemple, les nombres 9, 18 et 45 ont un multiple commun de 180. Mais 90 et 360 sont aussi leurs multiples communs. Parmi tous les multiples communs, il y en a toujours un plus petit, en dans ce cas c'est 90. Ce numéro s'appelle le plus petitcommun multiple (CMM).

Le LCM est toujours un nombre naturel qui doit être supérieur au plus grand des nombres pour lesquels il est défini.

Le plus petit commun multiple (LCM). Propriétés.

Commutativité:

Associativité :

En particulier, si et sont des nombres premiers entre eux, alors :

Plus petit commun multiple de deux entiers m Et n est un diviseur de tous les autres multiples communs m Et n. De plus, l’ensemble des multiples communs m, n coïncide avec l'ensemble des multiples de LCM ( m, n).

Les asymptotiques de peuvent être exprimées en termes de certaines fonctions de la théorie des nombres.

Donc, Fonction Chebyshev. Et:

Cela découle de la définition et des propriétés de la fonction de Landau g(n).

Ce qui découle de la loi de distribution des nombres premiers.

Recherche du plus petit commun multiple (LCM).

CNP ( un B) peut être calculé de plusieurs manières :

1. Si le plus grand diviseur commun est connu, vous pouvez utiliser sa connexion avec le LCM :

2. Connaître la décomposition canonique des deux nombres en facteurs premiers :

p 1 ,...,pk- divers nombres premiers, et d 1 ,...,dk Et e 1 ,...,ek— des entiers non négatifs (ils peuvent être des zéros si le nombre premier correspondant n'est pas dans le développement).

Puis CNP ( un,b) est calculé par la formule :

En d'autres termes, la décomposition LCM contient tous les facteurs premiers inclus dans au moins une des décompositions de nombres un B, et le plus grand des deux exposants de ce multiplicateur est pris.

Exemple:

Le calcul du plus petit commun multiple de plusieurs nombres peut se réduire à plusieurs calculs séquentiels du LCM de deux nombres :

Règle. Pour trouver le LCM d'une série de nombres, il vous faut :

- décomposer les nombres en facteurs premiers ;

- transférer la plus grande expansion (le produit des facteurs du produit souhaité) dans les facteurs du produit souhaité grand nombreà partir de ceux donnés), puis ajoutez des facteurs provenant de l'expansion d'autres nombres qui n'apparaissent pas dans le premier nombre ou qui y apparaissent moins de fois ;

— le produit résultant de facteurs premiers sera le LCM des nombres donnés.

Deux nombres naturels ou plus ont leur propre LCM. Si les nombres ne sont pas des multiples les uns des autres ou n'ont pas les mêmes facteurs d'expansion, alors leur LCM est égal au produit de ces nombres.

Les facteurs premiers du nombre 28 (2, 2, 7) sont complétés par le facteur 3 (le nombre 21), le produit résultant (84) sera le plus petit nombre, qui est divisible par 21 et 28.

Les facteurs premiers du plus grand nombre 30 sont complétés par le facteur 5 du nombre 25, le produit résultant 150 est supérieur au plus grand nombre 30 et est divisible par tous les nombres donnés sans reste. Ce moindre produit des possibles (150, 250, 300...), pour lesquels tous les nombres donnés sont des multiples.

Les nombres 2,3,11,37 sont des nombres premiers, donc leur LCM est égal au produit des nombres donnés.

Règle. Pour calculer le LCM des nombres premiers, vous devez multiplier tous ces nombres entre eux.

Une autre option:

Pour trouver le plus petit commun multiple (LCM) de plusieurs nombres dont vous avez besoin :

1) représenter chaque nombre comme un produit de ses facteurs premiers, par exemple :

504 = 2 2 2 3 3 7,

2) écrire les puissances de tous les facteurs premiers :

504 = 2 2 2 3 3 7 = 2 3 3 2 7 1,

3) noter tous les diviseurs premiers (multiplicateurs) de chacun de ces nombres ;

4) choisir le plus grand degré de chacun d'eux, trouvé dans tous les développements de ces nombres ;

5) multiplier ces pouvoirs.

Exemple. Trouvez le LCM des nombres : 168, 180 et 3024.

Solution. 168 = 2 2 2 3 7 = 2 3 3 1 7 1,

180 = 2 2 3 3 5 = 2 2 3 2 5 1,

3024 = 2 2 2 2 3 3 3 7 = 2 4 3 3 7 1.

Nous écrivons les plus grands diplômes tous les diviseurs premiers et multipliez-les :

CNP = 2 4 3 3 5 1 7 1 = 15 120.


Le matériel présenté ci-dessous est une suite logique de la théorie de l'article intitulé LCM - moindre commun multiple, définition, exemples, lien entre LCM et GCD. Ici, nous parlerons de trouver le plus petit commun multiple (LCM), Et Attention particulière Concentrons-nous sur la résolution d'exemples. Tout d’abord, nous montrerons comment le LCM de deux nombres est calculé à l’aide du PGCD de ces nombres. Ensuite, nous verrons comment trouver le plus petit commun multiple en factorisant les nombres en facteurs premiers. Après cela, nous nous concentrerons sur la recherche du LCM de trois nombres ou plus, et ferons également attention au calcul du LCM des nombres négatifs.

Navigation dans les pages.

Calcul du plus petit commun multiple (LCM) via GCD

Une façon de trouver le multiple le plus petit commun est basée sur la relation entre LCM et GCD. Connexion existante entre LCM et GCD vous permet de calculer le plus petit commun multiple de deux entiers positifs en utilisant un plus grand commun diviseur connu. La formule correspondante est LCM(a, b)=ab:PGCD(a, b) . Examinons des exemples de recherche du LCM à l'aide de la formule donnée.

Exemple.

Trouvez le plus petit commun multiple de deux nombres 126 et 70.

Solution.

Dans cet exemple a=126 , b=70 . Utilisons la connexion entre LCM et GCD, exprimée par la formule LCM(a, b)=ab:PGCD(a, b). Autrement dit, nous devons d’abord trouver le plus grand diviseur commun des nombres 70 et 126, après quoi nous pouvons calculer le LCM de ces nombres à l’aide de la formule écrite.

Trouvons GCD(126, 70) en utilisant l'algorithme euclidien : 126=70·1+56, 70=56·1+14, 56=14·4, donc, GCD(126, 70)=14.

Nous trouvons maintenant le plus petit commun multiple requis : PGCD(126, 70)=126·70 :PGCD(126, 70)= 126·70:14=630.

Répondre:

LCM(126, 70)=630 .

Exemple.

À quoi est égal LCM(68, 34) ?

Solution.

Parce que 68 est divisible par 34, alors PGCD(68, 34)=34. Calculons maintenant le plus petit commun multiple : PGCD(68, 34)=68·34:PGCD(68, 34)= 68·34:34=68.

Répondre:

LCM(68, 34)=68 .

Notez que l'exemple précédent correspond à la règle suivante pour trouver le LCM pour les entiers positifs a et b : si le nombre a est divisible par b, alors le plus petit commun multiple de ces nombres est a.

Trouver LCM en factorisant des nombres

Une autre façon de trouver le plus petit commun multiple consiste à factoriser les nombres en facteurs premiers. Si vous composez un produit à partir de tous les facteurs premiers de nombres donnés, puis excluez de ce produit tous les facteurs premiers communs présents dans les développements de nombres donnés, alors le produit résultant sera égal au plus petit commun multiple des nombres donnés. .

La règle énoncée pour trouver le LCM découle de l'égalité LCM(a, b)=ab:PGCD(a, b). En effet, le produit des nombres a et b est égal au produit de tous les facteurs impliqués dans le développement des nombres a et b. À son tour, GCD(a, b) est égal au produit de tous les facteurs premiers simultanément présents dans les développements des nombres a et b (comme décrit dans la section sur la recherche de GCD en utilisant le développement des nombres en facteurs premiers).

Donnons un exemple. Sachons que 75=3·5·5 et 210=2·3·5·7. Composons le produit à partir de tous les facteurs de ces développements : 2·3·3·5·5·5·7 . Maintenant de ce produit nous excluons tous les facteurs présents à la fois dans le développement du nombre 75 et dans le développement du nombre 210 (ces facteurs sont 3 et 5), alors le produit prendra la forme 2·3·5·5·7 . La valeur de ce produit est égale au plus petit commun multiple de 75 et 210, soit CNP(75, 210)= 2·3·5·5·7=1 050.

Exemple.

Factorisez les nombres 441 et 700 en facteurs premiers et trouvez le plus petit commun multiple de ces nombres.

Solution.

Factorisons les nombres 441 et 700 en facteurs premiers :

On obtient 441=3·3·7·7 et 700=2·2·5·5·7.

Créons maintenant un produit à partir de tous les facteurs impliqués dans le développement de ces nombres : 2·2·3·3·5·5·7·7·7. Excluons de ce produit tous les facteurs qui sont simultanément présents dans les deux expansions (il n'y a qu'un seul de ces facteurs - c'est le nombre 7) : 2·2·3·3·5·5·7·7. Ainsi, LCM(441, 700)=2·2·3·3·5·5·7·7=44 100.

Répondre:

CNP(441, 700)= 44 100 .

La règle permettant de trouver le LCM en utilisant la factorisation des nombres en facteurs premiers peut être formulée un peu différemment. Si les facteurs manquants du développement du nombre b sont ajoutés aux facteurs du développement du nombre a, alors la valeur du produit résultant sera égale au plus petit commun multiple des nombres a et b..

Par exemple, prenons les mêmes nombres 75 et 210, leurs décompositions en facteurs premiers sont les suivantes : 75=3·5·5 et 210=2·3·5·7. Aux facteurs 3, 5 et 5 du développement du nombre 75 on ajoute les facteurs manquants 2 et 7 du développement du nombre 210, on obtient le produit 2·3·5·5·7 dont la valeur est égal à LCM(75, 210).

Exemple.

Trouvez le plus petit commun multiple de 84 et 648.

Solution.

On obtient d'abord les décompositions des nombres 84 et 648 en facteurs premiers. Ils ressemblent à 84=2·2·3·7 et 648=2·2·2·3·3·3·3. Aux facteurs 2, 2, 3 et 7 du développement du nombre 84 on ajoute les facteurs manquants 2, 3, 3 et 3 du développement du nombre 648, on obtient le produit 2 2 2 3 3 3 3 7, ce qui est égal à 4 536 . Ainsi, le plus petit commun multiple souhaité de 84 et 648 est 4 536.

Répondre:

LCM(84, 648)=4 536 .

Trouver le LCM de trois nombres ou plus

Le plus petit commun multiple de trois nombres ou plus peut être trouvé en trouvant séquentiellement le LCM de deux nombres. Rappelons le théorème correspondant, qui permet de trouver le LCM de trois nombres ou plus.

Théorème.

Soit des nombres entiers positifs a 1 , a 2 , …, a k, le plus petit commun multiple m k de ces nombres est trouvé en calculant séquentiellement m 2 = LCM(a 1 , a 2) , m 3 = LCM(m 2 , a 3) , … , m k = LCM(m k−1 , a k) .

Considérons l'application de ce théorème en utilisant l'exemple de la recherche du plus petit commun multiple de quatre nombres.

Exemple.

Trouvez le LCM de quatre nombres 140, 9, 54 et 250.

Solution.

Dans cet exemple, un 1 =140, un 2 =9, un 3 =54, un 4 =250.

On trouve d'abord m 2 = LOC(une 1, une 2) = LOC(140, 9). Pour ce faire, en utilisant l'algorithme euclidien, on détermine PGCD(140, 9), on a 140=9·15+5, 9=5·1+4, 5=4·1+1, 4=1·4, donc, GCD(140, 9)=1 , d'où PGCD(140, 9)=140 9:PGCD(140, 9)= 140·9:1=1 260. C'est-à-dire m 2 =1 260.

Maintenant nous trouvons m 3 = LOC (m 2 , a 3) = LOC (1 260, 54). Calculons-le via PGCD(1 260, 54), que nous déterminons également à l'aide de l'algorithme euclidien : 1 260=54·23+18, 54=18·3. Alors pgcd(1,260, 54)=18, d'où pgcd(1,260, 54)= 1,260·54:gcd(1,260, 54)= 1,260·54:18=3,780. C'est-à-dire m 3 =3 780.

Il ne reste plus qu'à trouver m 4 = LOC(m 3, une 4) = LOC(3 780, 250). Pour ce faire, on trouve GCD(3,780, 250) en utilisant l'algorithme euclidien : 3,780=250·15+30, 250=30·8+10, 30=10·3. Par conséquent, GCM(3,780, 250)=10, d’où GCM(3,780, 250)= 3 780 250 : PGCD(3 780, 250)= 3 780·250:10=94 500. C'est-à-dire m 4 =94 500.

Ainsi, le plus petit commun multiple des quatre nombres originaux est 94 500.

Répondre:

LCM(140, 9, 54, 250)=94 500.

Dans de nombreux cas, il est pratique de trouver le plus petit commun multiple de trois nombres ou plus en utilisant des factorisations premières des nombres donnés. Dans ce cas, vous devez respecter la règle suivante. Le plus petit commun multiple de plusieurs nombres est égal au produit qui se compose comme suit : les facteurs manquants du développement du deuxième nombre s'ajoutent à tous les facteurs du développement du premier nombre, les facteurs manquants du développement du premier nombre le troisième nombre est ajouté aux facteurs résultants, et ainsi de suite.

Examinons un exemple de recherche du multiple le plus petit commun à l'aide de la factorisation première.

Exemple.

Trouvez le plus petit commun multiple des cinq nombres 84, 6, 48, 7, 143.

Solution.

Tout d'abord, on obtient des décompositions de ces nombres en facteurs premiers : 84=2·2·3·7, 6=2·3, 48=2·2·2·2·3, 7 (7 est un nombre premier, il coïncide avec sa décomposition en facteurs premiers) et 143=11.13.

Pour trouver le LCM de ces nombres, aux facteurs du premier nombre 84 (ils sont 2, 2, 3 et 7), il faut ajouter les facteurs manquants du développement du deuxième nombre 6. La décomposition du nombre 6 ne contient pas de facteurs manquants, puisque les 2 et 3 sont déjà présents dans la décomposition du premier nombre 84. Ensuite, aux facteurs 2, 2, 3 et 7, nous ajoutons les facteurs manquants 2 et 2 issus du développement du troisième nombre 48, nous obtenons un ensemble de facteurs 2, 2, 2, 2, 3 et 7. Il ne sera pas nécessaire d’ajouter des multiplicateurs à cet ensemble à l’étape suivante, puisque 7 y est déjà contenu. Enfin, aux facteurs 2, 2, 2, 2, 3 et 7 on ajoute les facteurs manquants 11 et 13 issus du développement du nombre 143. On obtient le produit 2·2·2·2·3·7·11·13, qui est égal à 48,048.

Deuxième numéro : b=

Séparateur de milliers Sans séparateur d'espace "´

Résultat:

Plus grand diviseur commun PGCD ( un,b)=6

Plus petit commun multiple de LCM ( un,b)=468

Le plus grand nombre naturel pouvant être divisé sans reste par les nombres a et b s'appelle plus grand diviseur commun(PGCD) de ces nombres. Noté pgcd(a,b), (a,b), pgcd(a,b) ou hcf(a,b).

Multiple moins commun Le LCM de deux entiers a et b est le plus petit nombre naturel divisible par a et b sans reste. Noté LCM(a,b), ou lcm(a,b).

Les entiers a et b sont appelés mutuellement premier, s'ils n'ont pas de diviseurs communs autres que +1 et −1.

Plus grand diviseur commun

Soit deux nombres positifs un 1 et un 2 1). Il faut trouver le diviseur commun de ces nombres, c'est-à-dire trouver un tel numéro λ , qui divise les nombres un 1 et un 2 en même temps. Décrivons l'algorithme.

1) Dans cet article, le mot nombre sera compris comme un nombre entier.

Laisser un 1 ≥ un 2 et laissez

m 1 , un 3 sont des nombres entiers, un 3 <un 2 (reste de la division un 1 par un 2 devrait être moins un 2).

Faisons comme si λ divise un 1 et un 2 alors λ divise m 1 un 2 et λ divise un 1 −m 1 un 2 =un 3 (Énoncé 2 de l'article « Divisibilité des nombres. Test de divisibilité »). Il s’ensuit que tout diviseur commun un 1 et un 2 est le diviseur commun un 2 et un 3. L’inverse est également vrai si λ diviseur commun un 2 et un 3 alors m 1 un 2 et un 1 =m 1 un 2 +un 3 est également divisible par λ . Donc le diviseur commun un 2 et un 3 est aussi un diviseur commun un 1 et un 2. Parce que un 3 <un 2 ≤un 1, alors on peut dire que la solution au problème de trouver le diviseur commun des nombres un 1 et un 2 réduit au problème plus simple de trouver le diviseur commun des nombres un 2 et un 3 .

Si un 3 ≠0, alors on peut diviser un 2 sur un 3. Alors

,

m 1 et un 4 sont des nombres entiers, ( un 4 reste de la division un 2 sur un 3 (un 4 <un 3)). Par un raisonnement similaire, nous arrivons à la conclusion que les diviseurs communs des nombres un 3 et un 4 coïncide avec les diviseurs communs des nombres un 2 et un 3, et aussi avec des diviseurs communs un 1 et un 2. Parce que un 1 , un 2 , un 3 , un 4, ... sont des nombres qui diminuent constamment, et comme il existe un nombre fini d'entiers entre un 2 et 0, puis à un moment donné n, reste de la division un non un n+1 sera égal à zéro ( un n+2 =0).

.

Tout diviseur commun λ Nombres un 1 et un 2 est aussi un diviseur de nombres un 2 et un 3 , un 3 et un 4 , .... un n et un n+1 . L'inverse est également vrai, les diviseurs communs des nombres un n et un n+1 sont aussi des diviseurs de nombres un n−1 et un n , .... , un 2 et un 3 , un 1 et un 2. Mais le diviseur commun des nombres un n et un n+1 est un nombre un n+1 , parce que un n et un n+1 sont divisibles par un n+1 (rappelez-vous que un n+2 =0). Ainsi un n+1 est aussi un diviseur de nombres un 1 et un 2 .

Notez que le numéro un n+1 est le plus grand diviseur des nombres un n et un n+1 , puisque le plus grand diviseur un n+1 est lui-même un n+1 . Si un n+1 peut être représenté comme un produit d'entiers, alors ces nombres sont aussi des diviseurs communs de nombres un 1 et un 2. Nombre un n+1 est appelé plus grand diviseur commun Nombres un 1 et un 2 .

Nombres un 1 et un 2 peut être un nombre positif ou négatif. Si l'un des nombres est égal à zéro, alors le plus grand diviseur commun de ces nombres sera égal à la valeur absolue de l'autre nombre. Le plus grand diviseur commun de zéros n’est pas défini.

L'algorithme ci-dessus s'appelle Algorithme euclidien trouver le plus grand diviseur commun de deux nombres entiers.

Un exemple de recherche du plus grand diviseur commun de deux nombres

Trouvez le plus grand diviseur commun de deux nombres 630 et 434.

  • Étape 1. Divisez le nombre 630 par 434. Le reste est 196.
  • Étape 2. Divisez le nombre 434 par 196. Le reste est 42.
  • Étape 3. Divisez le nombre 196 par 42. Le reste est 28.
  • Étape 4. Divisez le nombre 42 par 28. Le reste est 14.
  • Étape 5. Divisez le nombre 28 par 14. Le reste est 0.

À l'étape 5, le reste de la division est 0. Par conséquent, le plus grand diviseur commun des nombres 630 et 434 est 14. Notez que les nombres 2 et 7 sont également des diviseurs des nombres 630 et 434.

Nombres premiers entre eux

Définition 1. Soit le plus grand diviseur commun des nombres un 1 et un 2 est égal à un. Ensuite, ces numéros sont appelés nombres premiers entre eux, n'ayant pas de diviseur commun.

Théorème 1. Si un 1 et un 2 nombres premiers entre eux, et λ un nombre, puis n'importe quel diviseur commun de nombres λa 1 et un 2 est aussi un diviseur commun des nombres λ Et un 2 .

Preuve. Considérons l'algorithme euclidien pour trouver le plus grand diviseur commun des nombres un 1 et un 2 (voir ci-dessus).

.

Des conditions du théorème, il s'ensuit que le plus grand diviseur commun des nombres un 1 et un 2 et donc un n et un n+1 vaut 1. C'est-à-dire un n+1 =1.

Multiplions toutes ces égalités par λ , Alors

.

Soit le diviseur commun un 1 λ Et un 2 oui δ . Alors δ est inclus comme multiplicateur dans un 1 λ , m 1 un 2 λ et en un 1 λ -m 1 un 2 λ =un 3 λ (voir "Divisibilité des nombres", Énoncé 2). Plus loin δ est inclus comme multiplicateur dans un 2 λ Et m 2 un 3 λ , et est donc inclus comme facteur dans un 2 λ -m 2 un 3 λ =un 4 λ .

En raisonnant ainsi, nous sommes convaincus que δ est inclus comme multiplicateur dans un n−1 λ Et m n−1 un n λ , et donc dans un n−1 λ m n−1 un n λ =un n+1 λ . Parce que un n+1 =1, alors δ est inclus comme multiplicateur dans λ . Donc le nombre δ est le diviseur commun des nombres λ Et un 2 .

Considérons des cas particuliers du théorème 1.

Conséquence 1. Laisser un Et c Les nombres premiers sont relativement b. Puis leur produit ca est un nombre premier par rapport à b.

Vraiment. D'après le théorème 1 ca Et b ont les mêmes diviseurs communs que c Et b. Mais les chiffres c Et b relativement simple, c'est-à-dire avoir un seul diviseur commun 1. Alors ca Et b ont également un seul diviseur commun 1. Par conséquent ca Et b mutuellement simples.

Conséquence 2. Laisser un Et b nombres premiers entre eux et laissez b divise eak. Alors b divise et k.

Vraiment. De la condition d'approbation eak Et b avoir un diviseur commun b. En vertu du théorème 1, b doit être un diviseur commun b Et k. Ainsi b divise k.

Le corollaire 1 peut être généralisé.

Conséquence 3. 1. Laissez les chiffres un 1 , un 2 , un 3 , ..., un m sont premiers par rapport au nombre b. Alors un 1 un 2 , un 1 un 2 · un 3 , ..., un 1 un 2 un 3 ··· un m, le produit de ces nombres est premier par rapport au nombre b.

2. Ayons deux rangées de nombres

de telle sorte que chaque nombre de la première série est premier dans le rapport de chaque nombre de la deuxième série. Ensuite le produit

Vous devez trouver des nombres divisibles par chacun de ces nombres.

Si un nombre est divisible par un 1, alors il a la forme sa 1 où s un certain nombre. Si q est le plus grand commun diviseur des nombres un 1 et un 2, alors

s 1 est un entier. Alors

est multiples de nombres les moins courants un 1 et un 2 .

un 1 et un 2 sont relativement premiers, donc le plus petit commun multiple des nombres un 1 et un 2:

Nous devons trouver le plus petit commun multiple de ces nombres.

De ce qui précède, il s'ensuit que tout multiple de nombres un 1 , un 2 , un 3 doit être un multiple de nombres ε Et un 3 et retour. Soit le plus petit commun multiple des nombres ε Et un 3 oui ε 1 . Ensuite, des multiples de nombres un 1 , un 2 , un 3 , un 4 doit être un multiple de nombres ε 1 et un 4 . Soit le plus petit commun multiple des nombres ε 1 et un 4 oui ε 2. Ainsi, nous avons découvert que tous les multiples de nombres un 1 , un 2 , un 3 ,...,un m coïncide avec des multiples d'un certain nombre ε n, qui est appelé le plus petit commun multiple des nombres donnés.

Dans le cas particulier où les nombres un 1 , un 2 , un 3 ,...,un m sont relativement premiers, alors le plus petit commun multiple des nombres un 1 , un 2, comme représenté ci-dessus, a la forme (3). Ensuite, puisque un 3 premiers par rapport aux nombres un 1 , un 2 alors un 3 nombre premier un 1 · un 2 (Corollaire 1). Signifie le plus petit commun multiple des nombres un 1 ,un 2 ,un 3 est un nombre un 1 · un 2 · un 3. En raisonnant de la même manière, nous arrivons aux affirmations suivantes.

Déclaration 1. Le plus petit commun multiple des nombres premiers un 1 , un 2 , un 3 ,...,un m est égal à leur produit un 1 · un 2 · un 3 ··· un m.

Déclaration 2. Tout nombre divisible par chacun des nombres premiers entre eux un 1 , un 2 , un 3 ,...,un m est également divisible par leur produit un 1 · un 2 · un 3 ··· un m.

Le plus grand commun diviseur et le plus petit commun multiple sont des concepts arithmétiques clés qui facilitent le travail avec les fractions. LCM et sont le plus souvent utilisés pour trouver le dénominateur commun de plusieurs fractions.

Concepts de base

Le diviseur d'un entier X est un autre entier Y par lequel X est divisé sans laisser de reste. Par exemple, le diviseur de 4 est 2 et 36 est 4, 6, 9. Un multiple d'un entier X est un nombre Y divisible par X sans reste. Par exemple, 3 est un multiple de 15 et 6 est un multiple de 12.

Pour toute paire de nombres, nous pouvons trouver leurs diviseurs et multiples communs. Par exemple, pour 6 et 9, le commun multiple est 18 et le commun diviseur est 3. Évidemment, les paires peuvent avoir plusieurs diviseurs et multiples, donc les calculs utilisent le plus grand diviseur GCD et le plus petit multiple LCM.

Le plus petit diviseur n’a aucun sens puisque pour tout nombre, il vaut toujours un. Le plus grand multiple n’a également aucun sens, puisque la séquence des multiples va vers l’infini.

Trouver pgcd

Il existe de nombreuses méthodes pour trouver le plus grand diviseur commun, dont les plus connues sont :

  • énumération séquentielle des diviseurs, sélection des diviseurs communs pour une paire et recherche du plus grand d'entre eux ;
  • décomposition des nombres en facteurs indivisibles ;
  • Algorithme euclidien ;
  • algorithme binaire.

Aujourd'hui, dans les établissements d'enseignement, les méthodes les plus populaires sont la décomposition en facteurs premiers et l'algorithme euclidien. Ce dernier, à son tour, est utilisé lors de la résolution d'équations diophantiennes : la recherche de GCD est nécessaire pour vérifier l'équation pour la possibilité de résolution en nombres entiers.

Trouver le CNO

Le multiple le plus petit commun est également déterminé par énumération séquentielle ou décomposition en facteurs indivisibles. De plus, il est facile de trouver le LCM si le plus grand diviseur a déjà été déterminé. Pour les nombres X et Y, le LCM et le GCD sont liés par la relation suivante :

LCD(X,Y) = X × Y / PGCD(X,Y).

Par exemple, si GCM(15,18) = 3, alors LCM(15,18) = 15 × 18 / 3 = 90. L'exemple le plus évident d'utilisation de LCM consiste à trouver le dénominateur commun, qui est le plus petit commun multiple de fractions données.

Nombres premiers entre eux

Si une paire de nombres n’a pas de diviseur commun, alors une telle paire est appelée premier entre eux. Le pgcd de ces paires est toujours égal à un, et sur la base de la relation entre les diviseurs et les multiples, le pgcd des paires premières entre elles est égal à leur produit. Par exemple, les nombres 25 et 28 sont relativement premiers, car ils n'ont pas de diviseur commun, et LCM(25, 28) = 700, ce qui correspond à leur produit. Deux nombres indivisibles seront toujours premiers relativement.

Diviseur commun et calculateur multiple

À l'aide de notre calculatrice, vous pouvez calculer GCD et LCM pour un nombre arbitraire de nombres parmi lesquels choisir. Les tâches de calcul des diviseurs communs et des multiples se trouvent en arithmétique de 5e et 6e années, mais GCD et LCM sont des concepts clés en mathématiques et sont utilisés en théorie des nombres, en planimétrie et en algèbre communicative.

Exemples concrets

Dénominateur commun des fractions

Le plus petit commun multiple est utilisé pour trouver le dénominateur commun de plusieurs fractions. Disons que dans un problème arithmétique, vous devez additionner 5 fractions :

1/8 + 1/9 + 1/12 + 1/15 + 1/18.

Pour additionner des fractions, l'expression doit être réduite à un dénominateur commun, ce qui se réduit au problème de trouver le LCM. Pour ce faire, sélectionnez 5 nombres dans la calculatrice et saisissez les valeurs des dénominateurs dans les cellules appropriées. Le programme calculera le LCM (8, 9, 12, 15, 18) = 360. Vous devez maintenant calculer des facteurs supplémentaires pour chaque fraction, qui sont définis comme le rapport du LCM au dénominateur. Les multiplicateurs supplémentaires ressembleraient donc à :

  • 360/8 = 45
  • 360/9 = 40
  • 360/12 = 30
  • 360/15 = 24
  • 360/18 = 20.

Après cela, nous multiplions toutes les fractions par le facteur supplémentaire correspondant et obtenons :

45/360 + 40/360 + 30/360 + 24/360 + 20/360.

Nous pouvons facilement additionner ces fractions et obtenir le résultat 159/360. Nous réduisons la fraction de 3 et voyons la réponse finale - 53/120.

Résolution d'équations diophantiennes linéaires

Les équations diophantiennes linéaires sont des expressions de la forme ax + by = d. Si le rapport d / pgcd(a, b) est un nombre entier, alors l'équation peut être résolue en nombres entiers. Vérifions quelques équations pour voir si elles ont une solution entière. Vérifions d'abord l'équation 150x + 8y = 37. À l'aide d'une calculatrice, nous trouvons PGCD (150,8) = 2. Divisons 37/2 = 18,5. Le nombre n’est pas un nombre entier, donc l’équation n’a pas de racines entières.

Vérifions l'équation 1320x + 1760y = 10120. Utilisez une calculatrice pour trouver PGCD(1320, 1760) = 440. Divisons 10120/440 = 23. En conséquence, nous obtenons un nombre entier, par conséquent, l'équation diophantienne peut être résolue en coefficients entiers. .

Conclusion

GCD et LCM jouent un rôle important dans la théorie des nombres, et les concepts eux-mêmes sont largement utilisés dans une grande variété de domaines mathématiques. Utilisez notre calculatrice pour calculer les plus grands diviseurs et les plus petits multiples d'un nombre quelconque de nombres.