Jak znaleźć najmniejszą wspólną wielokrotność online. Jak znaleźć najmniejszą wspólną wielokrotność liczb

Kontynuujmy rozmowę o najmniejszej wspólnej wielokrotności, którą rozpoczęliśmy w rozdziale „LCM – najmniejsza wspólna wielokrotność, definicja, przykłady”. W tym temacie przyjrzymy się sposobom znalezienia LCM dla trzech lub więcej liczb oraz przyjrzymy się pytaniu, jak znaleźć LCM liczby ujemnej.

Yandex.RTB R-A-339285-1

Obliczanie najmniejszej wspólnej wielokrotności (LCM) za pomocą GCD

Ustaliliśmy już związek między najmniejszą wspólną wielokrotnością a największym wspólnym dzielnikiem. Teraz nauczmy się, jak określić LCM za pomocą GCD. Najpierw zastanówmy się, jak to zrobić dla liczb dodatnich.

Definicja 1

Najmniejszą wspólną wielokrotność można znaleźć poprzez największy wspólny dzielnik, korzystając ze wzoru LCM (a, b) = a · b: GCD (a, b).

Przykład 1

Musisz znaleźć LCM liczb 126 i 70.

Rozwiązanie

Weźmy a = 126, b = 70. Podstawmy wartości do wzoru na obliczenie najmniejszej wspólnej wielokrotności przez największy wspólny dzielnik LCM (a, b) = a · b: GCD (a, b) .

Znajduje gcd liczb 70 i 126. Do tego potrzebujemy algorytmu Euklidesa: 126 = 70 1 + 56, 70 = 56 1 + 14, 56 = 14 4, zatem GCD (126 , 70) = 14 .

Obliczmy LCM: LCD (126, 70) = 126 70: GCD (126, 70) = 126 70: 14 = 630.

Odpowiedź: LCM(126, 70) = 630.

Przykład 2

Znajdź liczbę 68 i 34.

Rozwiązanie

GCD w w tym przypadku Nie jest to trudne, ponieważ 68 dzieli się przez 34. Obliczmy najmniejszą wspólną wielokrotność korzystając ze wzoru: LCM (68, 34) = 68 34: GCD (68, 34) = 68 34: 34 = 68.

Odpowiedź: LCM(68, 34) = 68.

W tym przykładzie zastosowaliśmy regułę znajdowania najmniejszej wspólnej wielokrotności dodatnich liczb całkowitych a i b: jeśli pierwsza liczba jest podzielna przez drugą, LCM tych liczb będzie równy pierwszej liczbie.

Znalezienie LCM poprzez rozłożenie liczb na czynniki pierwsze

Przyjrzyjmy się teraz metodzie znajdowania LCM, która opiera się na rozłożeniu liczb na czynniki pierwsze.

Definicja 2

Aby znaleźć najmniejszą wspólną wielokrotność, musimy wykonać kilka prostych kroków:

  • tworzymy iloczyn wszystkich czynników pierwszych liczb, dla których musimy znaleźć LCM;
  • wykluczamy wszystkie czynniki pierwsze z ich otrzymanych produktów;
  • iloczyn otrzymany po wyeliminowaniu wspólnych czynników pierwszych będzie równy LCM podanych liczb.

Ta metoda znajdowania najmniejszej wspólnej wielokrotności opiera się na równości LCM (a, b) = a · b: GCD (a, b). Jeśli spojrzysz na wzór, stanie się jasne: iloczyn liczb aib jest równy iloczynowi wszystkich czynników biorących udział w rozkładzie tych dwóch liczb. W tym przypadku gcd dwóch liczb jest równe iloczynowi wszystkich czynników pierwszych, które są jednocześnie obecne w faktoryzacji tych dwóch liczb.

Przykład 3

Mamy dwie liczby 75 i 210. Możemy je rozłożyć na czynniki w następujący sposób: 75 = 3 5 5 I 210 = 2 3 5 7. Jeśli utworzysz iloczyn wszystkich czynników dwóch pierwotnych liczb, otrzymasz: 2 3 3 5 5 5 7.

Jeśli wykluczymy czynniki wspólne dla liczb 3 i 5, otrzymamy iloczyn w następującej postaci: 2 3 5 5 7 = 1050. Ten produkt będzie naszym LCM dla numerów 75 i 210.

Przykład 4

Znajdź LCM liczb 441 I 700 , rozkładając obie liczby na czynniki pierwsze.

Rozwiązanie

Znajdźmy wszystkie czynniki pierwsze liczb podanych w warunku:

441 147 49 7 1 3 3 7 7

700 350 175 35 7 1 2 2 5 5 7

Otrzymujemy dwa łańcuchy liczb: 441 = 3 3 7 7 i 700 = 2 2 5 5 7.

Iloczyn wszystkich czynników biorących udział w rozkładzie tych liczb będzie miał postać: 2 2 3 3 5 5 7 7 7. Znajdźmy wspólne czynniki. To jest liczba 7. Wykluczmy go z tego produkt całkowity: 2 2 3 3 5 5 7 7. Okazuje się, że NOC (441, 700) = 2 2 3 3 5 5 7 7 = 44 100.

Odpowiedź: LOC(441, 700) = 44100.

Podajmy inne sformułowanie metody znajdowania LCM poprzez rozkład liczb na czynniki pierwsze.

Definicja 3

Wcześniej wykluczyliśmy z całkowitej liczby czynników wspólnych dla obu liczb. Teraz zrobimy to inaczej:

  • Rozłóżmy obie liczby na czynniki pierwsze:
  • dodaj do iloczynu czynników pierwszych pierwszej liczby brakujące czynniki drugiej liczby;
  • otrzymujemy produkt, który będzie pożądanym LCM dwóch liczb.

Przykład 5

Wróćmy do liczb 75 i 210, dla których szukaliśmy LCM już w jednym z poprzednich przykładów. Podzielmy je na proste czynniki: 75 = 3 5 5 I 210 = 2 3 5 7. Do iloczynu czynników 3, 5 i 5 liczby 75 dodają brakujące czynniki 2 I 7 numery 210. Otrzymujemy: 2 · 3 · 5 · 5 · 7 . To jest LCM liczb 75 i 210.

Przykład 6

Konieczne jest obliczenie LCM liczb 84 i 648.

Rozwiązanie

Rozłóżmy liczby z warunku na proste czynniki: 84 = 2 2 3 7 I 648 = 2 2 2 3 3 3 3. Dodajmy do iloczynu czynniki 2, 2, 3 i 7 liczby 84 brakujące czynniki 2, 3, 3 i
3 numery 648. Otrzymujemy produkt 2 2 2 3 3 3 3 7 = 4536. Jest to najmniejsza wspólna wielokrotność 84 i 648.

Odpowiedź: LCM(84, 648) = 4536.

Znajdowanie LCM trzech lub więcej liczb

Niezależnie od tego z iloma liczbami mamy do czynienia, algorytm naszego działania zawsze będzie taki sam: znajdziemy po kolei LCM dwóch liczb. Istnieje twierdzenie dotyczące tego przypadku.

Twierdzenie 1

Załóżmy, że mamy liczby całkowite a 1 , a 2 , … , a k. NOC m k liczby te można znaleźć, obliczając kolejno m 2 = LCM (a 1, a 2), m 3 = LCM (m 2, a 3), ..., m k = LCM (m k - 1, a k).

Przyjrzyjmy się teraz, jak twierdzenie można zastosować do rozwiązania konkretnych problemów.

Przykład 7

Musisz obliczyć najmniejszą wspólną wielokrotność czterech liczb 140, 9, 54 i 250 .

Rozwiązanie

Wprowadźmy oznaczenie: a 1 = 140, a 2 = 9, a 3 = 54, a 4 = 250.

Zacznijmy od obliczenia m 2 = LCM (a 1 , a 2) = LCM (140, 9). Zastosujmy algorytm Euklidesa do obliczenia NWD liczb 140 i 9: 140 = 9 15 + 5, 9 = 5 1 + 4, 5 = 4 1 + 1, 4 = 1 4. Otrzymujemy: NWD (140, 9) = 1, NWD (140, 9) = 140 · 9: NWD (140, 9) = 140 · 9: 1 = 1260. Dlatego m 2 = 1260.

Obliczmy teraz według tego samego algorytmu m 3 = LCM (m 2 , a 3) = LCM (1 260, 54). Podczas obliczeń otrzymujemy m 3 = 3 780.

Wszystko, co musimy zrobić, to obliczyć m 4 = LCM (m 3 , a 4) = LCM (3 780, 250). Postępujemy według tego samego algorytmu. Otrzymujemy m 4 = 94 500.

LCM czterech liczb z przykładowego warunku wynosi 94500.

Odpowiedź: NOC (140, 9, 54, 250) = 94 500.

Jak widać obliczenia są proste, ale dość pracochłonne. Aby zaoszczędzić czas, możesz wybrać inną drogę.

Definicja 4

Oferujemy następujący algorytm działań:

  • rozkładamy wszystkie liczby na czynniki pierwsze;
  • do iloczynu czynników pierwszej liczby dodajemy brakujące czynniki z iloczynu drugiej liczby;
  • do iloczynu otrzymanego na poprzednim etapie dodajemy brakujące czynniki trzeciej liczby itp.;
  • wynikowy iloczyn będzie najmniejszą wspólną wielokrotnością wszystkich liczb z warunku.

Przykład 8

Musisz znaleźć LCM pięciu liczb 84, 6, 48, 7, 143.

Rozwiązanie

Rozłóżmy wszystkie pięć liczb na czynniki pierwsze: 84 = 2 2 3 7, 6 = 2 3, 48 = 2 2 2 2 3, 7, 143 = 11 13. Liczb pierwszych, czyli liczby 7, nie można rozłożyć na czynniki pierwsze. Liczby takie pokrywają się z ich rozkładem na czynniki pierwsze.

Weźmy teraz iloczyn czynników pierwszych 2, 2, 3 i 7 liczby 84 i dodajmy do nich brakujące czynniki drugiej liczby. Rozłożyliśmy liczbę 6 na 2 i 3. Czynniki te są już w iloczynie pierwszej liczby. Dlatego je pomijamy.

Kontynuujemy dodawanie brakujących mnożników. Przejdźmy do liczby 48, z iloczynu jej czynników pierwszych bierzemy 2 i 2. Następnie dodajemy czynnik pierwszy 7 z czwartej liczby oraz czynniki 11 i 13 z piątej. Otrzymujemy: 2 2 2 2 3 7 11 13 = 48048. Jest to najmniejsza wspólna wielokrotność pierwotnych pięciu liczb.

Odpowiedź: LCM(84, 6, 48, 7, 143) = 48048.

Znajdowanie najmniejszej wspólnej wielokrotności liczb ujemnych

Aby znaleźć najmniejszą wspólną wielokrotność liczb ujemnych, należy najpierw zastąpić te liczby liczbami o przeciwnym znaku, a następnie przeprowadzić obliczenia z wykorzystaniem powyższych algorytmów.

Przykład 9

LCM (54, - 34) = LCM (54, 34) i LCM (- 622, - 46, - 54, - 888) = LCM (622, 46, 54, 888).

Takie działania są dopuszczalne ze względu na to, że jeśli to zaakceptujemy A I - za– liczby przeciwne,
następnie zbiór wielokrotności liczby A dopasowuje zbiór wielokrotności liczby - za.

Przykład 10

Konieczne jest obliczenie LCM liczb ujemnych − 145 I − 45 .

Rozwiązanie

Zamieńmy liczby − 145 I − 45 do ich przeciwnych liczb 145 I 45 . Teraz korzystając z algorytmu obliczamy LCM (145, 45) = 145 · 45: GCD (145, 45) = 145 · 45: 5 = 1,305, wyznaczywszy wcześniej GCD za pomocą algorytmu Euklidesa.

Otrzymujemy, że LCM liczb wynosi - 145 i − 45 równa się 1 305 .

Odpowiedź: LCM (- 145, - 45) = 1305.

Jeśli zauważysz błąd w tekście, zaznacz go i naciśnij Ctrl+Enter

Największy wspólny dzielnik i najmniejsza wspólna wielokrotność to kluczowe pojęcia arytmetyczne, które pozwalają na łatwe działanie zwykłe ułamki. LCM i są najczęściej używane do znalezienia wspólnego mianownika kilku ułamków.

Podstawowe koncepcje

Dzielnik liczby całkowitej X to inna liczba całkowita Y, przez którą X jest dzielone bez pozostawiania reszty. Na przykład dzielnik liczby 4 to 2, a 36 to 4, 6, 9. Wielokrotność liczby całkowitej X to liczba Y, która dzieli się przez X bez reszty. Na przykład 3 jest wielokrotnością 15, a 6 jest wielokrotnością 12.

Dla każdej pary liczb możemy znaleźć ich wspólne dzielniki i wielokrotności. Na przykład dla liczb 6 i 9 wspólna wielokrotność wynosi 18, a wspólny dzielnik wynosi 3. Oczywiście pary mogą mieć kilka dzielników i wielokrotności, dlatego w obliczeniach używany jest największy dzielnik GCD i najmniejsza wielokrotność LCM.

Najmniejszy dzielnik nie ma znaczenia, ponieważ dla dowolnej liczby jest zawsze jeden. Największa wielokrotność również jest bez znaczenia, ponieważ ciąg wielokrotności zmierza do nieskończoności.

Znalezienie gcd

Istnieje wiele metod znajdowania największego wspólnego dzielnika, z których najbardziej znane to:

  • sekwencyjne wyszukiwanie dzielników, wybór wspólnych dla pary i poszukiwanie największego z nich;
  • rozkład liczb na czynniki niepodzielne;
  • algorytm euklidesowy;
  • algorytm binarny.

Dzisiaj o instytucje edukacyjne Do najpopularniejszych należą metody faktoryzacji liczb pierwszych i algorytm Euklidesa. To drugie z kolei wykorzystuje się przy rozwiązywaniu równań diofantyny: poszukiwanie NWD jest wymagane, aby sprawdzić równanie pod kątem możliwości rozwiązania w liczbach całkowitych.

Znalezienie NOC

Najmniejszą wspólną wielokrotność wyznacza się również poprzez wyszukiwanie sekwencyjne lub rozkład na niepodzielne czynniki. Ponadto łatwo jest znaleźć LCM, jeśli został już wyznaczony największy dzielnik. Dla liczb X i Y LCM i GCD są powiązane następującą zależnością:

LCD(X,Y) = X × Y / GCD(X,Y).

Na przykład, jeśli GCM(15,18) = 3, to LCM(15,18) = 15 × 18 / 3 = 90. Najbardziej oczywistym przykładem użycia LCM jest znalezienie wspólnego mianownika, który jest najmniejszą wspólną wielokrotnością dane ułamki.

Liczby względnie pierwsze

Jeśli para liczb nie ma wspólnych dzielników, wówczas taką parę nazywamy względnie pierwszą. Współczynnik gcd dla takich par jest zawsze równy jeden, a na podstawie połączenia między dzielnikami i wielokrotnościami, gcd dla par względnie pierwszych jest równy ich iloczynowi. Na przykład liczby 25 i 28 są względnie pierwsze, ponieważ nie mają wspólnych dzielników, a LCM(25, 28) = 700, co odpowiada ich iloczynowi. Każde dwie niepodzielne liczby zawsze będą względnie pierwsze.

Wspólny dzielnik i kalkulator wielokrotny

Za pomocą naszego kalkulatora możesz obliczyć GCD i LCM dla dowolnej liczby liczb do wyboru. Zadania dotyczące obliczania wspólnych dzielników i wielokrotności znajdują się w arytmetyce w piątej i szóstej klasie, ale GCD i LCM są kluczowymi pojęciami w matematyce i są wykorzystywane w teorii liczb, planimetrii i algebrze komunikacyjnej.

Przykłady z życia wzięte

Wspólny mianownik ułamków

Najmniejsza wspólna wielokrotność jest używana przy znajdowaniu wspólnego mianownika kilku ułamków. Wpuść problem arytmetyczny musisz zsumować 5 ułamków:

1/8 + 1/9 + 1/12 + 1/15 + 1/18.

Aby dodać ułamek, wyrażenie należy zredukować do wspólny mianownik, co sprowadza się do problemu znalezienia LCM. Aby to zrobić, wybierz 5 liczb w kalkulatorze i wprowadź wartości mianowników w odpowiednich komórkach. Program obliczy LCM (8, 9, 12, 15, 18) = 360. Teraz dla każdego ułamka należy obliczyć dodatkowe współczynniki, które definiuje się jako stosunek LCM do mianownika. Zatem dodatkowe mnożniki będą wyglądać następująco:

  • 360/8 = 45
  • 360/9 = 40
  • 360/12 = 30
  • 360/15 = 24
  • 360/18 = 20.

Następnie mnożymy wszystkie ułamki przez odpowiedni dodatkowy współczynnik i otrzymujemy:

45/360 + 40/360 + 30/360 + 24/360 + 20/360.

Możemy łatwo zsumować takie ułamki i otrzymać wynik jako 159/360. Zmniejszamy ułamek o 3 i widzimy ostateczną odpowiedź - 53/120.

Rozwiązywanie liniowych równań diofantyny

Liniowe równania diofantyny są wyrażeniami w postaci ax + by = d. Jeśli stosunek d / gcd(a, b) jest liczbą całkowitą, wówczas równanie można rozwiązać w liczbach całkowitych. Sprawdźmy kilka równań, aby zobaczyć, czy mają rozwiązanie w postaci liczb całkowitych. Najpierw sprawdźmy równanie 150x + 8y = 37. Używając kalkulatora, znajdujemy GCD (150,8) = 2. Podziel 37/2 = 18,5. Liczba nie jest liczbą całkowitą, dlatego równanie nie ma pierwiastków całkowitych.

Sprawdźmy równanie 1320x + 1760y = 10120. Użyj kalkulatora, aby znaleźć NWD(1320, 1760) = 440. Podziel 10120/440 = 23. W rezultacie otrzymamy liczbę całkowitą, zatem równanie diofantyny można rozwiązać przy użyciu współczynników całkowitych .

Wniosek

GCD i LCM odgrywają dużą rolę w teorii liczb, a same pojęcia są szeroko stosowane w wielu różnych obszarach matematyki. Skorzystaj z naszego kalkulatora i wykonaj obliczenia największe dzielniki i najmniejsze wielokrotności dowolnej liczby liczb.


Zaprezentowany poniżej materiał stanowi logiczną kontynuację teorii z artykułu LCM - najmniejsza wspólna wielokrotność, definicja, przykłady, powiązanie LCM z NWD. Tutaj będziemy rozmawiać znajdowanie najmniejszej wspólnej wielokrotności (LCM), I Specjalna uwaga Skupmy się na rozwiązywaniu przykładów. Najpierw pokażemy, jak oblicza się LCM dwóch liczb za pomocą NWD tych liczb. Następnie przyjrzymy się znajdowaniu najmniejszej wspólnej wielokrotności poprzez rozłożenie liczb na czynniki pierwsze. Następnie skupimy się na znalezieniu LCM trzech lub więcej liczb, a także zwrócimy uwagę na obliczenie LCM liczb ujemnych.

Nawigacja strony.

Obliczanie najmniejszej wspólnej wielokrotności (LCM) za pomocą GCD

Jednym ze sposobów znalezienia najmniejszej wspólnej wielokrotności jest relacja między LCM i GCD. Istniejące połączenie pomiędzy LCM i GCD pozwala obliczyć najmniejszą wspólną wielokrotność dwóch dodatnich liczb całkowitych przy użyciu znanego największego wspólnego dzielnika. Odpowiednia formuła to LCM(a, b)=a b:GCD(a, b) . Przyjrzyjmy się przykładom znajdowania LCM za pomocą podanego wzoru.

Przykład.

Znajdź najmniejszą wspólną wielokrotność dwóch liczb 126 i 70.

Rozwiązanie.

W tym przykładzie a=126, b=70. Skorzystajmy z związku pomiędzy LCM i NWD wyrażonego wzorem LCM(a, b)=a b:GCD(a, b). Oznacza to, że najpierw musimy znaleźć największy wspólny dzielnik liczb 70 i 126, po czym możemy obliczyć LCM tych liczb za pomocą zapisanego wzoru.

Znajdźmy NWD(126, 70) korzystając z algorytmu Euklidesa: 126=70·1+56, 70=56·1+14, 56=14·4, zatem GCD(126, 70)=14.

Teraz znajdujemy wymaganą najmniejszą wspólną wielokrotność: NWD(126, 70)=126·70:NWD(126, 70)= 126·70:14=630.

Odpowiedź:

LCM(126, 70)=630 .

Przykład.

Ile wynosi LCM(68, 34)?

Rozwiązanie.

Ponieważ 68 jest podzielne przez 34, wówczas NWD(68, 34)=34. Teraz obliczamy najmniejszą wspólną wielokrotność: NWD(68, 34)=68·34:NWD(68, 34)= 68.34:34=68.

Odpowiedź:

LCM(68, 34)=68.

Należy zauważyć, że poprzedni przykład pasuje do następującej reguły znajdowania LCM dla dodatnich liczb całkowitych a i b: jeśli liczba a jest podzielna przez b, to najmniejszą wspólną wielokrotnością tych liczb jest a.

Znalezienie LCM poprzez rozłożenie liczb na czynniki pierwsze

Innym sposobem znalezienia najmniejszej wspólnej wielokrotności jest rozłożenie liczb na czynniki pierwsze. Jeśli ułożysz iloczyn ze wszystkich czynników pierwszych danych liczb, a następnie wykluczysz z tego iloczynu wszystkie wspólne czynniki pierwsze występujące w rozwinięciach danych liczb, to otrzymany iloczyn będzie równy najmniejszej wspólnej wielokrotności danych liczb .

Podana zasada znajdowania LCM wynika z równości LCM(a, b)=a b:GCD(a, b). Rzeczywiście, iloczyn liczb aib jest równy iloczynowi wszystkich czynników biorących udział w rozszerzaniu liczb aib. Z kolei NWD(a, b) jest równe iloczynowi wszystkich czynników pierwszych występujących jednocześnie w rozwinięciach liczb a i b (co opisano w rozdziale o znajdowaniu NWD za pomocą rozwinięcia liczb na czynniki pierwsze).

Podajmy przykład. Powiedz nam, że 75=3,5,5 i 210=2,3,5,7. Utwórzmy iloczyn ze wszystkich czynników tych rozwinięć: 2,3,3,5,5,5,7 . Teraz z tego iloczynu wykluczymy wszystkie czynniki występujące zarówno w rozwinięciu liczby 75, jak i rozwinięciu liczby 210 (te czynniki to 3 i 5), wówczas iloczyn przyjmie postać 2,3,5,5,7 . Wartość tego iloczynu jest równa najmniejszej wspólnej wielokrotności 75 i 210, czyli NOC(75, 210)= 2,3,5,5,7=1050.

Przykład.

Rozłóż liczby 441 i 700 na czynniki pierwsze i znajdź najmniejszą wspólną wielokrotność tych liczb.

Rozwiązanie.

Rozłóżmy liczby 441 i 700 na czynniki pierwsze:

Otrzymujemy 441=3·3·7·7 i 700=2·2·5·5·7.

Utwórzmy teraz iloczyn ze wszystkich czynników biorących udział w rozwinięciu tych liczb: 2,2,3,3,5,5,7,7,7. Wykluczmy z tego iloczynu wszystkie czynniki, które występują jednocześnie w obu rozwinięciach (jest tylko jeden taki czynnik – jest to liczba 7): 2,2,3,3,5,5,7,7. Zatem, LCM(441, 700)=2·2·3·3·5·5·7·7=44 100.

Odpowiedź:

NOC(441, 700)= 44 100 .

Regułę znajdowania LCM za pomocą faktoryzacji liczb na czynniki pierwsze można sformułować nieco inaczej. Jeśli brakujące czynniki z rozwinięcia liczby b dodamy do czynników z rozwinięcia liczby a, to wartość otrzymanego iloczynu będzie równa najmniejszej wspólnej wielokrotności liczb a i b.

Weźmy na przykład te same liczby 75 i 210, ich rozkład na czynniki pierwsze wygląda następująco: 75=3,5,5 i 210=2,3,5,7. Do czynników 3, 5 i 5 z rozwinięcia liczby 75 dodajemy brakujące czynniki 2 i 7 z rozwinięcia liczby 210 i otrzymujemy iloczyn 2,3,5,5,7, którego wartość wynosi równe LCM(75, 210).

Przykład.

Znajdź najmniejszą wspólną wielokrotność 84 i 648.

Rozwiązanie.

Najpierw uzyskujemy rozkład liczb 84 i 648 na czynniki pierwsze. Wyglądają jak 84=2·2·3·7 i 648=2·2·2·3·3·3·3. Do czynników 2, 2, 3 i 7 z rozwinięcia liczby 84 dodajemy brakujące czynniki 2, 3, 3 i 3 z rozwinięcia liczby 648 i otrzymujemy iloczyn 2 2 2 3 3 3 3 7, co jest równe 4 536 . Zatem pożądana najmniejsza wspólna wielokrotność 84 i 648 wynosi 4536.

Odpowiedź:

LCM(84, 648) = 4536.

Znajdowanie LCM trzech lub więcej liczb

Najmniejszą wspólną wielokrotność trzech lub więcej liczb można znaleźć, znajdując kolejno LCM dwóch liczb. Przypomnijmy odpowiednie twierdzenie, które pozwala znaleźć LCM trzech lub więcej liczb.

Twierdzenie.

Niech zostaną podane dodatnie liczby całkowite a 1 , a 2 , …, a k, najmniejsza wspólna wielokrotność m k tych liczb zostanie znaleziona poprzez kolejne obliczenie m 2 = LCM(a 1 , a 2) , m 3 = LCM(m 2 , a 3) , … , m k = LCM(m k−1 , a k) .

Rozważmy zastosowanie tego twierdzenia na przykładzie znalezienia najmniejszej wspólnej wielokrotności czterech liczb.

Przykład.

Znajdź LCM czterech liczb 140, 9, 54 i 250.

Rozwiązanie.

W tym przykładzie a 1 =140, a 2 =9, a 3 =54, a 4 =250.

Najpierw znajdujemy m 2 = LOC(a 1 , a 2) = LOC(140, 9). Aby to zrobić, korzystając z algorytmu Euklidesa, wyznaczamy NWD(140, 9), mamy 140=9·15+5, 9=5·1+4, 5=4·1+1, 4=1·4, dlatego NWD(140, 9)=1, skąd NWD(140, 9)=140 9:NWD(140, 9)= 140·9:1=1260. Oznacza to, że m 2 = 1 260.

Teraz znajdujemy m 3 = LOC (m 2 , a 3) = LOC (1 260, 54). Obliczmy to poprzez NWD(1 260, 54), które również wyznaczamy za pomocą algorytmu Euklidesa: 1 260=54·23+18, 54=18·3. Wtedy gcd(1260, 54)=18, skąd gcd(1260, 54)= 1260·54:gcd(1260, 54)= 1260·54:18=3780. Oznacza to, że m 3 =3 780.

Pozostaje tylko znaleźć m 4 = LOC(m 3, a 4) = LOC(3 780, 250). Aby to zrobić, znajdujemy NWD(3,780, 250) za pomocą algorytmu Euklidesa: 3,780=250·15+30, 250=30,8+10, 30=10,3. Zatem GCM(3780, 250)=10, skąd GCM(3780, 250)= 3 780 250: NWD(3 780, 250)= 3780·250:10=94500. Oznacza to, że m 4 = 94 500.

Zatem najmniejsza wspólna wielokrotność pierwotnych czterech liczb wynosi 94 500.

Odpowiedź:

LCM(140, 9, 54, 250) = 94 500.

W wielu przypadkach wygodnie jest znaleźć najmniejszą wspólną wielokrotność trzech lub więcej liczb, stosując rozkład na czynniki pierwsze podanych liczb. W takim przypadku należy przestrzegać następującej zasady. Najmniejsza wspólna wielokrotność kilku liczb jest równa iloczynowi, który składa się z następującego wzoru: brakujące czynniki z rozwinięcia drugiej liczby dodawane są do wszystkich czynników z rozwinięcia pierwszej liczby, brakujące czynniki z rozwinięcia trzecia liczba jest dodawana do otrzymanych czynników i tak dalej.

Spójrzmy na przykład znajdowania najmniejszej wspólnej wielokrotności przy użyciu rozkładu na czynniki pierwsze.

Przykład.

Znajdź najmniejszą wspólną wielokrotność pięciu liczb 84, 6, 48, 7, 143.

Rozwiązanie.

Najpierw otrzymujemy rozkład tych liczb na czynniki pierwsze: 84=2·2·3·7, 6=2·3, 48=2·2·2·2·3, 7 (7 jest liczbą pierwszą, pokrywa się z rozkładem na czynniki pierwsze) i 143=11·13.

Aby znaleźć LCM tych liczb, do współczynników pierwszej liczby 84 (są to 2, 2, 3 i 7), należy dodać brakujące czynniki z rozwinięcia drugiej liczby 6. Rozkład liczby 6 nie zawiera brakujących czynników, ponieważ zarówno 2, jak i 3 są już obecne w rozkładzie pierwszej liczby 84. Następnie do czynników 2, 2, 3 i 7 dodajemy brakujące czynniki 2 i 2 z rozwinięcia trzeciej liczby 48 i otrzymujemy zbiór czynników 2, 2, 2, 2, 3 i 7. W następnym kroku nie będzie potrzeby dodawania mnożników do tego zestawu, ponieważ 7 jest już w nim zawarte. Na koniec do czynników 2, 2, 2, 2, 3 i 7 dodajemy brakujące czynniki 11 i 13 z rozwinięcia liczby 143. Otrzymujemy iloczyn 2,2,2,2,3,7,11,13, który jest równy 48,048.

Wielokrotność to liczba, która dzieli się przez podany numer bez śladu. Najmniejsza wspólna wielokrotność (LCM) grupy liczb to najmniejsza liczba, którą można podzielić przez każdą liczbę w grupie bez pozostawiania reszty. Aby znaleźć najmniejszą wspólną wielokrotność, należy znaleźć czynniki pierwsze danych liczb. LCM można również obliczyć przy użyciu szeregu innych metod, które mają zastosowanie do grup dwóch lub więcej liczb.

Kroki

Seria wielokrotności

    Spójrz na te liczby. Opisaną tutaj metodę najlepiej zastosować, gdy podano dwie liczby, z których każda jest mniejsza niż 10. Jeśli podano duże liczby, użyj innej metody.

    • Na przykład znajdź najmniejszą wspólną wielokrotność 5 i 8. Są to małe liczby, więc możesz zastosować tę metodę.
  1. Wielokrotność to liczba, która dzieli się przez daną liczbę bez reszty. Wielokrotności można znaleźć w tabliczce mnożenia.

    • Na przykład liczby będące wielokrotnościami 5 to: 5, 10, 15, 20, 25, 30, 35, 40.
  2. Zapisz ciąg liczb będący wielokrotnością pierwszej liczby. Zrób to pod wielokrotnościami pierwszej liczby, aby porównać dwa zestawy liczb.

    • Na przykład liczby będące wielokrotnościami 8 to: 8, 16, 24, 32, 40, 48, 56 i 64.
  3. Znajdź najmniejszą liczbę występującą w obu zbiorach wielokrotności. Aby znaleźć całkowitą liczbę, konieczne może być napisanie długich serii wielokrotności. Najmniejsza liczba występująca w obu zbiorach wielokrotności jest najmniejszą wspólną wielokrotnością.

    • Na przykład najmniejsza liczba występująca w szeregu wielokrotności 5 i 8 to liczba 40. Dlatego 40 jest najmniejszą wspólną wielokrotnością 5 i 8.

    Faktoryzacja pierwsza

    1. Spójrz na te liczby. Opisaną tutaj metodę najlepiej zastosować, gdy podano dwie liczby, z których każda jest większa niż 10. Jeśli podano mniejsze liczby, użyj innej metody.

      • Na przykład znajdź najmniejszą wspólną wielokrotność liczb 20 i 84. Każda z liczb jest większa niż 10, więc możesz zastosować tę metodę.
    2. Rozłóż pierwszą liczbę na czynniki pierwsze. Oznacza to, że musisz znaleźć taki liczby pierwsze, po pomnożeniu otrzymuje się tę liczbę. Po znalezieniu czynników pierwszych zapisz je jako równości.

      • Na przykład, 2 × 10 = 20 (\ Displaystyle (\ mathbf (2)) \ razy 10 = 20) I 2 × 5 = 10 (\ Displaystyle (\ mathbf (2)) \ razy (\ mathbf (5)) = 10). Zatem, proste czynniki liczby 20 to liczby 2, 2 i 5. Zapisz je jako wyrażenie: .
    3. Rozłóż drugą liczbę na czynniki pierwsze. Zrób to w taki sam sposób, jak rozłożyłeś pierwszą liczbę, czyli znajdź takie liczby pierwsze, które po pomnożeniu dadzą podaną liczbę.

      • Na przykład, 2 × 42 = 84 (\ Displaystyle (\ mathbf (2)) \ razy 42 = 84), 7 × 6 = 42 (\ Displaystyle (\ mathbf (7)) \ razy 6 = 42) I 3 × 2 = 6 (\ Displaystyle (\ mathbf (3)) \ razy (\ mathbf (2)) = 6). Zatem czynnikami pierwszymi liczby 84 są liczby 2, 7, 3 i 2. Zapisz je jako wyrażenie: .
    4. Zapisz czynniki wspólne obu liczb. Zapisz takie czynniki, jak operacja mnożenia. Podczas wpisywania każdego czynnika przekreśl go w obu wyrażeniach (wyrażeniach opisujących rozkład liczb na czynniki pierwsze).

      • Na przykład obie liczby mają wspólny współczynnik 2, więc napisz 2 × (\ Displaystyle 2 \ razy) i skreśl 2 w obu wyrażeniach.
      • To, co łączy obie liczby, to kolejny współczynnik 2, więc pisz 2 × 2 (\ Displaystyle 2 \ razy 2) i skreśl drugie 2 w obu wyrażeniach.
    5. Dodaj pozostałe czynniki do operacji mnożenia. Są to czynniki, które nie są przekreślone w obu wyrażeniach, czyli czynniki, które nie są wspólne dla obu liczb.

      • Na przykład w wyrażeniu 20 = 2 × 2 × 5 (\ Displaystyle 20 = 2 \ razy 2 \ razy 5) Obie dwójki (2) zostały przekreślone, ponieważ są to czynniki wspólne. Współczynnik 5 nie jest przekreślony, dlatego zapisz operację mnożenia w następujący sposób: 2 × 2 × 5 (\ Displaystyle 2 \ razy 2 \ razy 5)
      • W wyrazie 84 = 2 × 7 × 3 × 2 (\ Displaystyle 84 = 2 \ razy 7 \ razy 3 \ razy 2) obie dwójki (2) są również przekreślone. Współczynniki 7 i 3 nie są przekreślone, więc zapisz operację mnożenia w następujący sposób: 2 × 2 × 5 × 7 × 3 (\ Displaystyle 2 \ razy 2 \ razy 5 \ razy 7 \ razy 3).
    6. Oblicz najmniejszą wspólną wielokrotność. Aby to zrobić, pomnóż liczby w zapisanej operacji mnożenia.

      • Na przykład, 2 × 2 × 5 × 7 × 3 = 420 (\ Displaystyle 2 \ razy 2 \ razy 5 \ razy 7 \ razy 3 = 420). Zatem najmniejszą wspólną wielokrotnością 20 i 84 jest 420.

    Znalezienie wspólnych czynników

    1. Narysuj siatkę przypominającą grę w kółko i krzyżyk. Taka siatka składa się z dwóch równoległych linii, które przecinają się (pod kątem prostym) z kolejnymi dwiema równoległymi liniami. To da ci trzy wiersze i trzy kolumny (siatka wygląda bardzo podobnie do ikony #). Wpisz pierwszą liczbę w pierwszym wierszu i drugiej kolumnie. Wpisz drugą liczbę w pierwszym rzędzie i trzeciej kolumnie.

      • Na przykład znajdź najmniejszą wspólną wielokrotność liczb 18 i 30. Wpisz liczbę 18 w pierwszym rzędzie i drugiej kolumnie, a liczbę 30 w pierwszym rzędzie i trzeciej kolumnie.
    2. Znajdź dzielnik wspólny dla obu liczb. Zapisz to w pierwszym wierszu i pierwszej kolumnie. Lepiej jest szukać czynników pierwszych, ale nie jest to wymagane.

      • Na przykład 18 i 30 to liczby parzyste, więc ich wspólny dzielnik wyniesie 2. Zatem wpisz 2 w pierwszym rzędzie i pierwszej kolumnie.
    3. Podziel każdą liczbę przez pierwszy dzielnik. Zapisz każdy iloraz pod odpowiednią liczbą. Iloraz jest wynikiem dzielenia dwóch liczb.

      • Na przykład, 18 ÷ 2 = 9 (\ Displaystyle 18 \ div 2 = 9), więc wpisz 9 pod 18.
      • 30 ÷ 2 = 15 (\ Displaystyle 30 \ div 2 = 15), więc zapisz 15 poniżej 30.
    4. Znajdź dzielnik wspólny dla obu ilorazów. Jeżeli nie ma takiego dzielnika, pomiń kolejne dwa kroki. W przeciwnym razie wpisz dzielnik w drugim wierszu i pierwszej kolumnie.

      • Na przykład 9 i 15 są podzielne przez 3, więc wpisz 3 w drugim rzędzie i pierwszej kolumnie.
    5. Podziel każdy iloraz przez jego drugi dzielnik. Zapisz każdy wynik dzielenia pod odpowiednim ilorazem.

      • Na przykład, 9 ÷ 3 = 3 (\ Displaystyle 9 \ div 3 = 3), więc napisz 3 pod 9.
      • 15 ÷ 3 = 5 (\ Displaystyle 15 \ div 3 = 5), więc napisz 5 pod 15.
    6. Jeśli to konieczne, dodaj dodatkowe komórki do siatki. Powtarzaj opisane kroki, aż ilorazy będą miały wspólny dzielnik.

    7. Zakreśl liczby w pierwszej kolumnie i ostatnim rzędzie siatki. Następnie zapisz wybrane liczby w formie operacji mnożenia.

      • Na przykład liczby 2 i 3 znajdują się w pierwszej kolumnie, a liczby 3 i 5 w ostatnim wierszu, więc zapisz operację mnożenia w następujący sposób: 2 × 3 × 3 × 5 (\ Displaystyle 2 \ razy 3 \ razy 3 \ razy 5).
    8. Znajdź wynik mnożenia liczb. Spowoduje to obliczenie najmniejszej wspólnej wielokrotności dwóch podanych liczb.

      • Na przykład, 2 × 3 × 3 × 5 = 90 (\ Displaystyle 2 \ razy 3 \ razy 3 \ razy 5 = 90). Zatem najmniejszą wspólną wielokrotnością 18 i 30 jest 90.

    Algorytm Euklidesa

    1. Zapamiętaj terminologię związaną z operacją dzielenia. Dzielna to liczba, która jest dzielona. Dzielnik to liczba, przez którą jest dzielona. Iloraz jest wynikiem dzielenia dwóch liczb. Reszta to liczba, która pozostaje po podzieleniu dwóch liczb.

      • Na przykład w wyrażeniu 15 ÷ 6 = 2 (\ Displaystyle 15 \ div 6 = 2) ost. 3:
        15 to dywidenda
        6 to dzielnik
        2 jest ilorazem
        3 to reszta.

Drugi numer: b=

Separator tysięcy Bez separatora spacji „”.

Wynik:

Największy wspólny dzielnik gcd( A,B)=6

Najmniejsza wspólna wielokrotność LCM ( A,B)=468

Największy Liczba naturalna, przez który liczby a i b są dzielone bez reszty, nazywa się Największy wspólny dzielnik(GCD) tych liczb. Oznaczone przez gcd(a,b), (a,b), gcd(a,b) lub hcf(a,b).

Najmniejsza wspólna wielokrotność LCM dwóch liczb całkowitych aib jest najmniejszą liczbą naturalną, która dzieli się przez aib bez reszty. Oznaczone jako LCM(a,b) lub lcm(a,b).

Nazywa się liczby całkowite a i b wzajemnie pierwsze, jeśli nie mają wspólnych dzielników innych niż +1 i -1.

Największy wspólny dzielnik

Niech zostaną podane dwie liczby dodatnie A 1 i A 2 1). Konieczne jest znalezienie wspólnego dzielnika tych liczb, tj. znajdź taką liczbę λ , który dzieli liczby A 1 i A 2 jednocześnie. Opiszmy algorytm.

1) W tym artykule liczba słów będzie rozumiana jako liczba całkowita.

Pozwalać A 1 ≥ A 2 i niech

Gdzie M 1 , A 3 to niektóre liczby całkowite, A 3 <A 2 (reszta z dzielenia A 1 os A 2 powinno być mniej A 2).

Udawajmy, że tak λ dzieli A 1 i A 2 wtedy λ dzieli M 1 A 2 i λ dzieli A 1 −M 1 A 2 =A 3 (Stwierdzenie 2 artykułu „Podzielność liczb. Test na podzielność”). Wynika z tego, że każdy wspólny dzielnik A 1 i A 2 jest wspólnym dzielnikiem A 2 i A 3. Odwrotna sytuacja jest również prawdą, jeśli λ wspólny dzielnik A 2 i A 3 wtedy M 1 A 2 i A 1 =M 1 A 2 +A 3 jest również podzielne przez λ . Dlatego wspólny dzielnik A 2 i A 3 jest także wspólnym dzielnikiem A 1 i A 2. Ponieważ A 3 <A 2 ≤A 1, to możemy powiedzieć, że jest to rozwiązanie problemu znalezienia wspólnego dzielnika liczb A 1 i A 2 zredukowano do prostszego problemu znalezienia wspólnego dzielnika liczb A 2 i A 3 .

Jeśli A 3 ≠0, to możemy dzielić A 2 włączone A 3. Następnie

,

Gdzie M 1 i A 4 to niektóre liczby całkowite, ( A 4 pozostałe z dzielenia A 2 włączone A 3 (A 4 <A 3)). Z podobnego rozumowania dochodzimy do wniosku, że wspólne dzielniki liczb A 3 i A 4 pokrywa się ze wspólnymi dzielnikami liczb A 2 i A 3, a także ze wspólnymi dzielnikami A 1 i A 2. Ponieważ A 1 , A 2 , A 3 , A 4, ... to liczby, które stale maleją, a pomiędzy nimi jest skończona liczba liczb całkowitych A 2 i 0, a potem w pewnym momencie N, pozostała część podziału A n A n+1 będzie równe zero ( A n+2 =0).

.

Każdy wspólny dzielnik λ liczby A 1 i A 2 jest także dzielnikiem liczb A 2 i A 3 , A 3 i A 4 , .... A n i A n+1 . Odwrotna sytuacja jest również prawdą, wspólne dzielniki liczb A n i A n+1 są także dzielnikami liczb A n-1 i A N , .... , A 2 i A 3 , A 1 i A 2. Ale wspólny dzielnik liczb A n i A n+1 to liczba A n+1 , ponieważ A n i A n+1 jest podzielne przez A n+1 (pamiętaj o tym A n+2 =0). Stąd A n+1 jest także dzielnikiem liczb A 1 i A 2 .

Należy pamiętać, że liczba A n+1 to największy dzielnik liczb A n i A n+1 , ponieważ największy dzielnik A n+1 jest sobą A n+1 . Jeśli A n+1 można przedstawić jako iloczyn liczb całkowitych, wówczas liczby te są również wspólnymi dzielnikami liczb A 1 i A 2. Numer A nazywa się n+1 Największy wspólny dzielnik liczby A 1 i A 2 .

Liczby A 1 i A 2 może być liczbą dodatnią lub ujemną. Jeżeli jedna z liczb jest równa zeru, to największy wspólny dzielnik tych liczb będzie równy wartości bezwzględnej drugiej liczby. Największy wspólny dzielnik liczb zerowych jest nieokreślony.

Powyższy algorytm nazywa się Algorytm euklidesowy znaleźć największy wspólny dzielnik dwóch liczb całkowitych.

Przykład znalezienia największego wspólnego dzielnika dwóch liczb

Znajdź największy wspólny dzielnik dwóch liczb 630 i 434.

  • Krok 1. Podziel liczbę 630 przez 434. Reszta to 196.
  • Krok 2. Podziel liczbę 434 przez 196. Reszta to 42.
  • Krok 3. Podziel liczbę 196 przez 42. Reszta to 28.
  • Krok 4. Podziel liczbę 42 przez 28. Reszta to 14.
  • Krok 5. Podziel liczbę 28 przez 14. Reszta to 0.

W kroku 5 reszta dzielenia wynosi 0. Zatem największym wspólnym dzielnikiem liczb 630 i 434 jest 14. Zauważ, że liczby 2 i 7 są również dzielnikami liczb 630 i 434.

Liczby względnie pierwsze

Definicja 1. Niech największy wspólny dzielnik liczb A 1 i A 2 równa się jeden. Następnie wywoływane są te liczby liczby względnie pierwsze, nie mający wspólnego dzielnika.

Twierdzenie 1. Jeśli A 1 i A 2 liczby względnie pierwsze i λ pewna liczba, a następnie dowolny wspólny dzielnik liczb λa 1 i A 2 jest także wspólnym dzielnikiem liczb λ I A 2 .

Dowód. Rozważmy algorytm Euklidesa służący do znajdowania największego wspólnego dzielnika liczb A 1 i A 2 (patrz wyżej).

.

Z warunków twierdzenia wynika, że ​​największy wspólny dzielnik liczb A 1 i A 2 i dlatego A n i A n+1 równa się 1. To znaczy A n+1 =1.

Pomnóżmy wszystkie te równości przez λ , Następnie

.

Niech wspólny dzielnik A 1 λ I A 2 tak δ . Następnie δ jest uwzględniany jako mnożnik w A 1 λ , M 1 A 2 λ i w A 1 λ -M 1 A 2 λ =A 3 λ (patrz „Podzielność liczb”, stwierdzenie 2). Dalej δ jest uwzględniany jako mnożnik w A 2 λ I M 2 A 3 λ , i dlatego jest uwzględniany jako czynnik w A 2 λ -M 2 A 3 λ =A 4 λ .

Rozumując w ten sposób, jesteśmy o tym przekonani δ jest uwzględniany jako mnożnik w A n-1 λ I M n-1 A N λ , a zatem w A n-1 λ M n-1 A N λ =A n+1 λ . Ponieważ A n+1 =1, zatem δ jest uwzględniany jako mnożnik w λ . Dlatego liczba δ jest wspólnym dzielnikiem liczb λ I A 2 .

Rozważmy szczególne przypadki twierdzenia 1.

Konsekwencja 1. Pozwalać A I C Liczby pierwsze są względne B. Potem ich produkt AC jest liczbą pierwszą względem B.

Naprawdę. Z twierdzenia 1 AC I B mają takie same wspólne dzielniki jak C I B. Ale liczby C I B stosunkowo proste, tj. mają jeden wspólny dzielnik 1. Następnie AC I B mają również jeden wspólny dzielnik 1. Dlatego AC I B wzajemnie proste.

Konsekwencja 2. Pozwalać A I B liczby względnie pierwsze i niech B dzieli ok. Następnie B dzieli i k.

Naprawdę. Od warunku zatwierdzenia ok I B mają wspólny dzielnik B. Na mocy Twierdzenia 1, B musi być wspólnym dzielnikiem B I k. Stąd B dzieli k.

Wniosek 1 można uogólnić.

Konsekwencja 3. 1. Niech liczby A 1 , A 2 , A 3 , ..., A m są liczbą pierwszą w stosunku do liczby B. Następnie A 1 A 2 , A 1 A 2 · A 3 , ..., A 1 A 2 A 3 ··· A m, iloczyn tych liczb jest liczbą pierwszą B.

2. Miejmy dwa rzędy liczb

tak, że każda liczba z pierwszego szeregu jest liczbą pierwszą w stosunku do każdej liczby z drugiego szeregu. Następnie produkt

Musisz znaleźć liczby podzielne przez każdą z tych liczb.

Jeśli liczba jest podzielna przez A 1, to ma postać sa 1 gdzie S jakiś numer. Jeśli Q jest największym wspólnym dzielnikiem liczb A 1 i A 2, zatem

Gdzie S 1 to pewna liczba całkowita. Następnie

Jest najmniejsza wspólna wielokrotność liczb A 1 i A 2 .

A 1 i A 2 są względnie pierwsze, to najmniejsza wspólna wielokrotność liczb A 1 i A 2:

Musimy znaleźć najmniejszą wspólną wielokrotność tych liczb.

Z powyższego wynika, że ​​dowolna wielokrotność liczb A 1 , A 2 , A 3 musi być wielokrotnością liczb ε I A 3 i z powrotem. Niech najmniejsza wspólna wielokrotność liczb ε I A 3 tak ε 1. Następnie wielokrotności liczb A 1 , A 2 , A 3 , A Liczba 4 musi być wielokrotnością liczb ε 1 i A 4. Niech najmniejsza wspólna wielokrotność liczb ε 1 i A 4 tak ε 2. W ten sposób dowiedzieliśmy się, że wszystkie wielokrotności liczb A 1 , A 2 , A 3 ,...,A m pokrywają się z wielokrotnościami pewnej liczby ε n, co nazywa się najmniejszą wspólną wielokrotnością danych liczb.

W szczególnym przypadku, gdy liczby A 1 , A 2 , A 3 ,...,A m są względnie pierwsze, to najmniejsza wspólna wielokrotność liczb A 1 , A 2, jak pokazano powyżej, ma postać (3). Następny, od A 3 liczby pierwsze w odniesieniu do liczb A 1 , A 2 wtedy A 3 liczba pierwsza A 1 · A 2 (wniosek 1). Oznacza najmniejszą wspólną wielokrotność liczb A 1 ,A 2 ,A 3 to liczba A 1 · A 2 · A 3. Rozumując w podobny sposób, dochodzimy do następujących stwierdzeń.

Oświadczenie 1. Najmniejsza wspólna wielokrotność liczb względnie pierwszych A 1 , A 2 , A 3 ,...,A m jest równe ich iloczynowi A 1 · A 2 · A 3 ··· A M.

Oświadczenie 2. Dowolna liczba, która jest podzielna przez każdą z liczb względnie pierwszych A 1 , A 2 , A 3 ,...,A m jest również podzielne przez ich iloczyn A 1 · A 2 · A 3 ··· A M.