Что является источником ультрафиолетового излучения. Как можно убедиться, что линзы обеспечивают защиту от ультрафиолетового излучения? Кварцевые излучающие приборы

Понятие об ультрафиолетовых лучах впервые встречается у индийского философа 13-го века в его труде. Атмосфера описанной им местности Bhootakasha содержала фиолетовые лучи, которые невозможно увидеть невооружённым глазом.

Вскоре после того, как было обнаружено инфракрасное излучение, немецкий физик Иоганн Вильгельм Риттер начал поиски излучения и в противоположном конце спектра, с длиной волны короче, чем у фиолетового цвета.В 1801 году он обнаружил, что хлорид серебра, разлагающийся под действием света, быстрее разлагается под действием невидимого излучения за пределами фиолетовой области спектра. Хлорид серебра белого цвета в течение нескольких минут темнеет на свету. Разные участки спектра по-разному влияют на скорость потемнения. Быстрее всего это происходит перед фиолетовой областью спектра. Тогда многие ученые, включая Риттера, пришли к соглашению, что свет состоит из трех отдельных компонентов: окислительного или теплового (инфракрасного) компонента, осветительного компонента (видимого света), и восстановительного (ультрафиолетового) компонента. В то время ультрафиолетовое излучение называли также актиническим излучением. Идеи о единстве трёх различных частей спектра были впервые озвучены лишь в 1842 году в трудах Александра Беккереля , Македонио Меллони и др.

Подтипы

Деградация полимеров и красителей

Сфера применения

Чёрный свет

Химический анализ

УФ - спектрометрия

УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ-излучением, длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отраженного излучения, а по оси абсцисс - длина волны, образует спектр . Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение.

Анализ минералов

Многие минералы содержат вещества, которые при освещении ультрафиолетовым излучением начинают испускать видимый свет. Каждая примесь светится по-своему, что позволяет по характеру свечения определять состав данного минерала. А. А. Малахов в своей книге «Занимательно о геологии» (М., «Молодая гвардия», 1969. 240 с) рассказывает об этом так: «Необычное свечение минералов вызывают и катодный, и ультрафиолетовый, и рентгеновский лучи. В мире мёртвого камня загораются и светят наиболее ярко те минералы, которые, попав в зону ультрафиолетового света, рассказывают о мельчайших примесях урана или марганца, включённых в состав породы. Странным „неземным“ цветом вспыхивают и многие другие минералы, не содержащие никаких примесей. Целый день я провёл в лаборатории, где наблюдал люминесцентное свечение минералов. Обычный бесцветный кальцит расцвечивался чудесным образом под влиянием различных источников света. Катодные лучи делали кристалл рубиново-красным, в ультрафиолете он загорался малиново-красными тонами. Два минерала - флюорит и циркон - не различались в рентгеновских лучах. Оба были зелёными. Но стоило подключить катодный свет, как флюорит становился фиолетовым, а циркон - лимонно-жёлтым.» (с. 11).

Качественный хроматографический анализ

Хроматограммы, полученные методом ТСХ , нередко просматривают в ультрафиолетовом свете, что позволяет идентифицировать ряд органических веществ по цвету свечения и индексу удерживания.

Ловля насекомых

Ультрафиолетовое излучение нередко применяется при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет.

Искусственный загар и «Горное солнце»

При определённых дозировках искусственный загар позволяет улучшить состояние и внешний вид кожи человека, способствует образованию витамина D . В настоящее время популярны фотарии, которые в быту часто называют соляриями .

Ультрафиолет в реставрации

Один из главных инструментов экспертов - ультрафиолетовое, рентгеновское и инфракрасное излучение. Ультрафиолетовые лучи позволяют определить старение лаковой пленки - более свежий лак в ультрафиолете выглядит темнее. В свете большой лабораторной ультрафиолетовой лампы более темными пятнами проступают отреставрированные участки и кустарно переписанные подписи. Рентгеновские лучи задерживаются наиболее тяжелыми элементами. В человеческом теле это костная ткань, а на картине - белила. Основой белил в большинстве случаев является свинец, в XIX веке стали применять цинк, а в XX-м - титан. Все это тяжелые металлы. В конечном счете, на пленке мы получаем изображение белильного подмалевка. Подмалевок - это индивидуальный «почерк» художника, элемент его собственной уникальной техники. Для анализа подмалевка используются базы рентгенограмм картин великих мастеров. Также эти снимки применяются для распознания подлинности картины.

Примечания

  1. ISO 21348 Process for Determining Solar Irradiances . Архивировано из первоисточника 23 июня 2012.
  2. Бобух, Евгений О зрении животных . Архивировано из первоисточника 7 ноября 2012. Проверено 6 ноября 2012.
  3. Советская энциклопедия
  4. В. К. Попов // УФН . - 1985. - Т. 147. - С. 587-604.
  5. А. К. Шуаибов, В. С. Шевера Ультрафиолетовый азотный лазер на 337,1 нм в режиме частых повторений // Украинский физический журнал . - 1977. - Т. 22. - № 1. - С. 157-158.
  6. А. Г. Молчанов

Живительные лучи.

Солнце испускает три типа ультрафиолетовых лучей. Каждый из этих типов по-разному воздействует на кожу.

Большинство из нас после отдыха на пляже чувствует себя более здоровыми и полными жизни. Благодаря живительным лучам в коже образуется витамин D, который необходим для полноценного усвоения кальция. Но благотворно воздействуют на организм только небольшие дозы солнечного облучения.

Но сильно загорелая кожа это все-таки поврежденная кожа и,как следствие преждевременное старение и высокий риск развития рака кожи.

Солнечный свет - электромагнитное излучение. Кроме видимого спектра излучения в нем присутствует ультрафиолетовое, которое собственно и отвечает за загар. Ультрафиолет стимулирует способность пигментных клеток меланоцитов производить больше меланина, выполняющего защитную функцию.

Типы УФ лучей.

Существуют три типа ультрафиолетовых лучей, которые различаются по длине волны. Ультрафиолетовое излучение способно проникать сквозь эпидермис кожи в более глубокие слои. Это активизирует процесс производства новых клеток и кератина, в результате кожа становится более жесткой и грубой. Солнечные лучи, проникая сквозь дерму разрушают коллаген и приводят к изменениям толщины и текстура кожи.

Ультрафиолетовые лучи А.

Эти лучи обладают наиболее низким уровнем радиации. Раньше было принято считать, что они безвредны, однако, в настоящее время доказано, что это не так. Уровень этих лучей остается практически постоянным на протяжении всего дня и года. Они проникают даже сквозь стекло.

УФ лучи типа А проникают сквозь слои кожи, достигая дермы, повреждают основание и структуру кожи, разрушая волокна коллагена и эластина.

А-лучи способствуют появлению морщин, уменьшают эластичность кожи, ускоряют появление признаков преждевременного старения, ослабляют защитную систему кожи, делая ее более подверженной инфекциям и, возможно, онкологическим заболеваниям.

Ультрафиолетовые лучи В.

Лучи этого типа испускаются солнцем лишь в определенные времена года и часы дня. В зависимости от температуры воздуха и географической широты они обычно проникают в атмосферу в период с 10 до 16 часов.

УФ лучи типа В наносят коже более серьезный урон, так как взаимодействуют с молекулами ДНК, которые содержатся в клетках кожи. В-лучи повреждают эпидермис, что приводит к появлению солнечных ожогов. В-лучи повреждают эпидермис, что приводит к появлению солнечных ожогов. Излучение этого типа усиливает активность свободных радикалов, которые ослабляют естественную защитную систему кожи.

Ультрафиолетовые лучи В способствуют появлению загара и вызывают солнечные ожоги, ведут к преждевременному старению и появлению темных пигментных пятен, делают кожу грубой и шершавой, ускоряют появление морщин, могут спровоцировать развитие предраковых заболеваний и рака кожи.

Ультрафиолетовое излучение (УФИ) - электромагнитное излучение оптического диапазона, которое условно подразделяется на коротковолновое (УФИ С - с длиной волны 200-280 нм), средневолновое (УФИ В - с длиной волны 280-320 нм) и длинноволновое (УФИ А - с длиной волны 320-400 нм).

УФИ генерируют как естественные, так и искусственные источники. Основной естественный источник УФИ - Солнце. До поверхности Земли доходит УФИ в диапазоне 280-400 нм, так как более короткие волны поглощаются в верхних слоях стратосферы.

Искусственные источники УФИ широко применяются в промышленности, медицине и др.

Фактически любой материал, нагретый до температуры, превышающей 2500 еК, генерирует УФИ. Источниками УФИ является сварка кислородно-ацетиленовыми, кислородно-водородными, плазменными горелками.

Источники биологически эффективного УФИ можно подразделить на газоразрядные и флюоресцентные. К газоразрядным относятся ртутные лампы низкого давления с максимумом излучения на длине волны 253,7 нм, т.е. соответствующие максимуму бактерицидной эффективности, и высокого давления с длинами волн 254, 297, 303, 313 нм. Последние широко используются в фотохимических реакторах, в печатном деле, для фототерапии кожных заболеваний. Ксеноновые лампы применяются для тех же целей, что и ртутные. Оптические спектры импульсных ламп зависят от используемого в них газа - ксенон, криптон, аргон, неон и др.

В люминесцентных лампах спектр зависит от использованного ртутного люминофора.

Избыточному воздействию УФИ могут подвергаться работники промышленных предприятий и медицинских учреждений, где используются выше перечисленные источники, а также люди, работающие на открытом воздухе за счет солнечной радиации (сельскохозяйственные, строительные, железнодорожные рабочие, рыбаки и др.).

Установлено, что как недостаток, так и избыток УФИ отрицательно сказываются на состоянии здоровья человека. При недостаточности УФИ у детей развивается рахит вследствие нехватки витамина Д и нарушения фосфорно-кальциевого обмена, снижается активность защитных систем организма, в первую очередь - иммунной, что делает его более уязвимым к воздействию неблагоприятных факторов.

Критическими органами к восприятию УФИ являются кожа и глаза. Острые поражения глаз, так называемые электроофтальмии (фотоофтальмии), представляют собой острые конъюнктивиты. Заболеванию предшествует латентный период, продолжительность которого около 12 часов. С хроническими поражениями глаз связывают хронический конъюнктивит, блефарит, катаракту хрусталика.

Поражения кожи протекают в форме острых дерматитов с эритемой, иногда отеком, вплоть до образования пузырей. Наряду с местной реакцией могут отмечаться общетоксические явления. В дальнейшем наблюдаются гиперпигментация и шелушение. Хронические изменения кожных покровов, вызванных УФИ, выражаются в старении кожи, развитии кератоза, атрофии эпидермиса, возможны злокачественные новообразования.

В последнее время интерес к укреплению здоровья населения путем профилактического ультрафиолетового облучения значительно возрос. Действительно, ультрафиолетовое голодание, наблюдаемое обычно в зимнее время года и особенно у жителей Севера России, ведет к значительному снижению защитных сил организма и повышению уровня заболеваемости. В первую очередь страдают дети.

Наша страна является родоначальницей движения за компенсацию ультрафиолетовой недостаточности у населения с исполь- зованием искусственных источников ультрафиолетовой радиации, спектр которых приближается к естественному. Опыт использования искусственных источников ультрафиолетовой радиации требует соответствующей коррекции в отношении дозы и методов использования.

Территория России с юга на север простирается от 40 до 80? с.ш. и условно делится на пять климатических районов страны. Оценим естественный ультрафиолетовый климат двух крайних и одного среднего географических районов. Это районы Севера (70? с.ш. - Мурманск, Норильск, Дудинка и др.), Средней полосы (55? с.ш. - Москва и др.) и Юга (40? с.ш. - Сочи и др.) нашей страны.

Напомним, что по биологическому действию спектр ультрафиолетового излучения Солнца делится на две области: «А» - излучение с длиной волны 400-315 нм, и «В» - излучение с длиной волны менее 315 нм (до 280 нм). Однако практически земной поверхности лучи короче 290 нм не достигают. Ультрафиолетовое излучение с длиной волны менее 280 нм, которое имеется только в спектре искусственных источников, относится к области «C» ультрафиолетовой радиации. У человека отсутствуют рецепторы, которые срочно (с малым латентным периодом) реагируют на ультрафиолетовую радиацию. Особенностью естественного УФ-излучения является его способность вызывать (с относительно длинным латентным периодом) эритему, являющуюся специфической реакцией организма на действие УФ-радиации солнечного спектра. В наибольшей степени образовывать эритему способна УФ-радиация с длиной волны максимум 296,7 нм (табл. 10.1).

Таблица 10.1. Эритемная эффективность монохроматического УФ-излучения

Как видно из табл. 10.1, излучение с длиной волны 285 нм в 10 раз, а лучи с длиной волны 290 нм и 310 нм в 3 раза менее активно образуют эритему, чем излучение с длиной волны 297 нм.

Приход суточной УФ-радиации солнца для указанных выше районов страны в летний период (табл. 10.2) относительно высок 35- 52 эр-ч/м -2 (1 эр-ч/м -2 = 6000 мкВт-мин/см 2). Однако в другие периоды года имеется существенное различие, и зимой, особенно на Севере, естественная радиация солнца отсутствует.

Таблица 10.2. Среднее распределение эритемной радиации области (эр-ч/м -2)

Северная широта

Месяц

III

VI

IX

XII

18,2

26,7

46,5

Величина суммарной радиации в различных широтах отражает суточный приход излучения. Однако при учете количества излуче- ния, поступающего в среднем не за 24, а лишь за 1 час, выявляется следующая картина. Так, в июне на широте 70? с.ш. за сутки поступает 35 эр-ч/м -2 . Солнце при этом все 24 часа не уходит с небосвода, следовательно, в час эритемная радиация будет составлять 1,5 эр-ч/м -2 . В этот же период года на широте 40? Солнце излучает 77 эр-ч/м -2 и сияет 15 часов, следовательно, часовая эритемная облученность составит 5,13 эр-ч/м -2 , т.е. величину в 3 раза большую, чем на широте 70?. Для определения режима облучения целесообразно проводить оценку прихода суммарной УФ солнечной радиации не за 24, а за 15 часов, т.е. за период бодрствования человека, так как в конечном итоге нас интересует количество естественной радиации, влияющей на человека, а не количество энергии Солнца, падающей на поверхность Земли вообще.

Важной особенностью действия на человека естественной УФрадиации является способность предупреждать так называемую D-витаминную недостаточность. В отличие от обычных витаминов, витамин D фактически не содержится в естественных продуктах питания (исключение составляют печень некоторых рыб, особенно трески и палтуса, а также яичный желток и молоко). Этот витамин синтезируется в коже под воздействием УФ радиации.

Недостаточное воздействие УФ-излучения без одновременного действия видимой радиации на организм человека приводит к разно- образным проявлениям D-авитаминоза.

В процессе D-витаминной недостаточности в первую очередь нарушаются трофика центральной нервной системе и клеточное дыхание, как субстрат нервной трофики. Это нарушение, ведущее к ослаблению окислительно-восстановительных процессов, следует, очевидно, считать основным, в то время как все остальные многообразные проявления будут вторичными. Наиболее чувствительны к отсутствию УФ-радиации маленькие дети, у которых в результате D-авитаминоза может развиться рахит и, как следствие рахита, - близорукость.

Способностью предупреждать и излечивать рахит в наибольшей степени обладает УФ-излучение области В.

Процесс синтеза витамина D под воздействием УФ-излучения довольно сложен.

В нашей стране витамин D был получен синтетическим путем в 1952 г. Исходным сырьем для синтеза послужил холестерин. В процессе превращения холестерина в провитамин образовывалась двойная связь в кольце В стерина путем последовательного бромирования. Полученный бензонат 7-дегидрохолестерина омыляется в Г-дегидрохолестерин, который уже под воздействием УФ-излучения превращается в витамин. Сложные процессы перехода провитамина в витамин зависят от спектрального состава УФ-радиации. Так, лучи с длиной волны максимум 310 нм способны превращать эргостерин в люмистерин, который переходит в техистерин, и, наконец, под действием лучей с длиной волны 280-313 нм техистерин превращается в витамин D.

Витамин D в организме осуществляет регуляцию содержания кальция и фосфора в крови. При недостаточности этого витамина нарушается фосфорно-кальциевый обмен, тесно связанный с процессами окостенения скелета, кислотно-щелочным равновесием, свертываемостью крови и т.д.

При рахите нарушается условно-рефлекторная деятельность, при этом образование условных рефлексов происходит медленнее, чем у здоровых людей, и они быстро исчезают, т.е. возбудимость коры головного мозга у детей, страдающих рахитом, значительно понижена. При этом клетки коры функционируют слабо и легко истощаются. Кроме того, наблюдается расстройство тормозной функции больших полушарий.

Торможение в течение длительного времени может широко распространяться по коре мозга.

Совершенно ясно, что необходимо проводить соответствующие профилактические мероприятия, т.е. использовать полноценный УФ-климат.

Тип источника

Мощность, Вт

Облученность в энергетических единицах на расстоянии 1 м

УФ-радиация область А

УФ-радиация область В

УФ-радиация область С

мкВт/см 2

%

мкВт/см 2

%

мкВт/см 2

%

ПРК-7 (ДРК-7)

1000

ЛЭР-40

28,6

22,6

Однако следует заметить, что спектральный состав искусственного радиационного климата, имеющий место в условиях фотария с лампой типа ПРК, значительно отличается от естественного наличием коротковолновой УФ-радиации.

С выпуском в нашей стране эритемных люминесцентных ламп небольшой мощности стало возможным использование искусст- венных источников УФ-радиации в условиях фотария и в системе общего освещения.

Доза профилактического УФ-облучения. Несколько слов из истории. Профилактическое облучение шахтеров было начато в 30-х годах ХХ столетия. В то время не было соответствующего опыта и необходимой теоретической базы в отношении выбора дозы именно

профилактического облучения. Было решено использовать опыт лечебный, применяемый в физиотерапевтической практике при лечении разного рода заболеваний. Заимствованы были не только источники УФ-радиации, но и схема облучения. Биологический эффект облучения лампами ПРК, в спектре которых имеется бактерицидное излучение, был весьма сомнителен. Так, нами установлено, что соотношение биологической активности областей «В» и «С», участвующих в образовании эритемы, составляет 1:8. Первые методические указания по эксплуатации фотариев были разработаны преимущественно физиотерапевтами. В дальнейшем вопросами профилактического облучения занимались гигиенисты, биологи. В 50-х годах прошлого столетия проблема профилактического облучения приобрела гигиеническую направленность. Были проведены многочисленные исследования в разных городах и климатических районах России, которые позволили по-новому подойти к дозе профилактического УФ-облучения.

Установление профилактической дозы УФ-радиации является весьма трудной задачей, ибо следует решать и учитывать ряд связанных между собой факторов, таких как:

Источник УФ-радиации;

Способ его использования;

Площадь облучаемой поверхности;

Сезон начала облучения;

Фоточувствительность кожи (биодоза);

Интенсивность облучения (облученность);

Время облучения.

В работе использовались эритемные лампы, в спектре которых отсутствует бактерицидное УФ-излучение. Эритемная биодоза

Таблица 10.4. Взаимосвязь физических и приведенных единиц для

выражения дозы УФ-радиации области В (280-350 нм)

мкВт/см 2

мЭр-ч/м 2

мкЭр-ч/см 2

мЭр-мин/м 2

мкВт/см 2

0,0314

мЭр-ч/м 2

мкЭр-ч/м 2

0,157

мЭр-мин/м 2

0,0157

выражена в физических (мкВт/см 2) или приведенных (мкЭр/см 2) величинах, соотношения которых представлены в табл. 10.4.

Следует особо подчеркнуть, что облученность эритемного потока УФ излучения оценивать в эффективных (или приведенных) еди- ницах - эрах (Эр - эритемный поток излучения с длиной волны 296,7 нм мощностью 1 Вт) можно лишь при излучении области «В».

Для выражения облученности участка «В» УФ-спектра в эрах следует его облученность, выраженную в физических единицах (Вт), умножить на коэффициент эритемной чувствительности кожи. Коэффициент эритемной чувствительности кожи для лучей с длиной волны 296,7 нм принят в 1935 г. Международной комиссией по освещению за единицу.

Используя лампы ЛЭР, мы приступили к нахождению оптимальной профилактической дозы УФ-радиации и оценке «метода облучения», под которым имеется в виду главным образом длительность ежедневного облучения, продолжающегося от минуты до нескольких часов.

В свою очередь длительность профилактического облучения зависит от способа использования искусственных излучателей (исполь- зования излучателей в системе общего освещения или в условиях фотария) и от фоточувствительности кожи (от значения эритемной биодозы).

Разумеется, что при разных способах применения искусственных излучателей облучению подвергаются разные по площади поверхности тела. Так, при использовании люминесцентных ламп в системе общего освещения облучаются лишь открытые части тела - лицо, руки, шея, волосистая часть головы, а в фотарии - практически все тело.

УФ-облученность в помещении при использовании эритемных ламп небольшая, отсюда длительность облучения составляет 6-8 ч, тогда как в фотарии, где облученность достигает значительной величины, действие радиации не превышает 5-6 мин.

При нахождении оптимальной дозы профилактического облучения следует руководствоваться тем, что начальная дозы профилактического облучения должна быть ниже биодозы, т.е. субэритемной. В противном случае возможен ожог кожи. Профилактическая доза УФ-составляющей должна выражаться в абсолютных величинах.

Постановка вопроса о выражении профилактической дозы в абсолютных физических (приведенных) величинах отнюдь не

означает отказа от необходимости определения индивидуальной чувствительности кожи к УФ-радиации. Определение биодозы перед началом облучения необходимо, но лишь для того, чтобы выяснить, не меньше ли она рекомендуемой профилактической дозы. Практически при определении биодозы (по Горбачеву) можно использовать биодизиметр, имеющий не 8 или 10 отверстий, как это имеет место в лечебной практике, а значительно меньше или даже одно, которое может быть облучено дозой, равной профилактической. Если облучаемый участок кожи покраснел, т.е. биодоза меньше профилактической, то начальная доза облучения должна быть уменьшена, а облучение проводится возрастающими дозами при начальной дозе равной биодозе.

Сравнительный анализ таких физиологических показателей, как эритемная биодоза, фагоцитарная активность лейкоцитов крови, ломкость капилляров, активность щелочной фосфотазы свидетельствовал о том, что дополнительное искусственное облучение УФ-радиацией эритемными лампами, проводимое зимой, вызывая весьма положительное действие, не способствует в полной мере поддержанию изучаемых физиологических реакций на том уровне, который наблюдается осенью после длительного воздействия природной УФ-радиации.

Анализ уровней физиологических показателей облучающихся дозой УФ-радиации при разном методе облучения, обусловленном способом использования искусственных излучателей, позволил сделать заключение, что биологический эффект воздействия УФ-радиации не зависит от примененных методов облучения.

Динамика чувствительности кожи к УФ-радиации известным образом отражает процессы, происходящие в организме в результате длительного отсутствия природной УФ-радиации.

При профилактическом УФ-облучении необходимо учитывать климатические особенности местности, где проживают облучаемые (для определения сроков облучения), среднее значение их эритемной биодозы (для выбора начальной дозы облучения) и то, что профилактическая доза облучения, нормируемая в абсолютных величинах, не должна быть ниже 2000 мкВт-мин/см 2 (60-62 мЭр-ч/м 2).

Профилактические мероприятия по предупреждению острого конъюнктивита при воздействии УФИ сводятся к применению светозащитных очков или щитков при электросварочных и других работах с источниками УФИ. Для защиты кожи от УФИ используются

защитная одежда, противосолнечные экраны (навесы), специальные кремы.

Основная роль в профилактике неблагоприятного воздействия УФИ на организм принадлежит гигиеническим нормативам. В настоящее время действуют «Санитарные нормы ультрафиолетового излучения в производственных помещениях» СН? 4557-88. Нормируемой величиной является облученность, Вт/м1. Указанные нормативы регламентируют допустимые величины УФИ для кожи с учетом длительности облучения в течение рабочей смены и площади облучаемой поверхности кожи.

Светолечение активно применяется в медицинской практике для лечения различных заболеваний. Оно включает использование видимого света, лазера, инфракрасного спектра, а также ультрафиолетовых лучей (УФО). Наиболее часто назначается УФО-физиотерапия.

Она применяется для терапии ЛОР-патологий, заболеваний опорно-двигательной системы, при иммунодефицитах, бронхиальной астме и других болезнях. Ультрафиолетовое облучение используют также для бактериостатического эффекта при инфекционных заболеваниях, для обработки воздуха в помещениях.

Общее понятие ультрафиолетового облучения, разновидности приборов, механизм воздействия, показания

Ультрафиолетовое облучение (УФО) – это физиотерапевтическая процедура, которая основана на воздействии лучей ультрафиолетового спектра на ткани и органы. Действие на организм может отличаться при использовании разных длин волн.

УФО-лучи имеют разную длину волны:

  • Длинноволновые (ДУФ) (400–320 нм).
  • Средневолновое (СУФ) (320–280 нм).
  • Коротковолновые (КУФ) (280–180 нм).

Для физиотерапии используют специальные аппараты. Они генерируют ультрафиолетовые лучи разной длинны.

УФО-аппараты для физиотерапии:

  • Интегральные. Генерируют весь спектр УФО.
  • Селективные. Вырабатывают один вид ультрафиолетового излучения: коротковолновые, комбинация коротковолновых и средневолновых спектров.
Интегральные Селективные

ОУШ-1 (для индивидуального применения, местного облучения, общего воздействия на организм);

ОН-7 (подходят для носоглотки)

ОУН 250, ОУН 500 - настольного типа для местного применения).

Источником облучения является ртутно-кварцевая трубчатая лампа. Мощность может быть различной: от 100 до 1000 Вт.

Коротковолновый спектр (КУФ). Источники бактерицидного действия: ОБН-1 (настенный), ОБП-300 (потолочный). Используются для обеззараживания помещений.

Короткие лучи для местного воздействия (облучение кожи, слизистых): БОП-4.

Средневолновый спектр генерируется люминесцентными эритемными источниками с пропускающим ультрафиолет стеклом: ЛЭ-15, ЛЭ-30.

Источники длинных волн (ДУФ) применяют для общего воздействия на организм.

В физиотерапии ультрафиолетовое облучение назначается для профилактики и лечения различных болезней. Механизм воздействия ультрафиолета следующий: активируются обменные процессы, улучшается передача импульсов по нервным волокнам. При попадании УФО-лучей на кожу у пациента развивается эритема. Она выглядит как покраснение кожного покрова. Невидимый период формирования эритемы составляет 3-12 часов. Появившееся эритематозное образование остается на коже еще несколько суток, оно имеет четкие границы.

Длинноволновый спектр не вызывает очень выраженной эритемы. Средневолновые лучи способны уменьшать количество свободных радикалов, стимулируют синтез молекул АТФ. Короткие лучи УФО очень быстро провоцируют эритематозное высыпание.

Небольшие дозировки средних и длинных УФ-волн не способны вызывать эритему. Они нужны для общего действия на организм.

Польза небольших дозировок УФО:

  • Усиливает образование эритроцитов и других клеток крови.
  • Повышает функцию надпочечников, симпатической системы.
  • Снижает образование жировых клеток.
  • Повышает работу именной системы.
  • Стимулирует иммунные реакции.
  • Нормализует уровень глюкозы в крови.
  • Уменьшает количество холестерина крови.
  • Регулирует выведение и всасывание фосфора и кальция.
  • Улучшает функцию сердца и легких.

Местное излучение помогает стимулировать иммунные реакции в области попадания лучей, увеличивает приток крови и отток лимфы.

Дозировки облучения, не провоцирующие появления покраснения, обладают следующими свойствами: повышают регенераторную функцию, усиливают питание тканей, стимулируют появление в коже меланина, повышают иммунитет, стимулируют образование витамина Д. Более высокие дозы, вызывающие эритему (чаще КУФ), способны убивать бактериальных агентов, снижают интенсивность болевого синдрома, уменьшают воспаление на слизистых и коже.

Показания к физиолечению

Общее воздействие Местное воздействие
Стимуляция иммунитета при иммунодефицитах.

Профилактика и терапия рахита (дефицита витамина Д) у детей, при беременности, кормлении грудью.

Гнойные поражения кожного покрова, мягких тканей.

Повышение иммунитета при хронических процессах.

Увеличение образования клеток крови.

Заместительная терапия при дефиците УФО.

Болезни суставов.

Патологии дыхательной системы.

Бронхиальная астма.

Хирургические гнойные раны, пролежни, ожоги, обморожения, абсцессы, рожа, переломы.

Экстрапирамидный синдром, демиелинизирующие патологии, травмы головы, радикулопатии, различные виды болей.

Стоматиты, гингивиты, пародонтоз, инфильтративное образование после удаления зуба.

Риниты, тонзиллиты, гаймориты.

Трещины на сосках у женщин, острые гинекологические воспалительные заболевания.

Мокнущая пупочная ранка у новорожденных, диатез с проявлением экссудации, ревматоидные болезни, пневмонии, поражение кожи стафилококком.

Псориаз, экзематозные высыпания, гнойные поражения кожи у дерматологических больных.

Противопоказаниями к облучению являются:

  • Опухолевый процесс.
  • Гипертермия.
  • Инфекционные заболевания.
  • Гиперпродукция гормонов щитовидной железы.
  • Красная волчанка.
  • Печеночная и почечная дисфункция.

Методика проведения ультрафиолетового облучения

Перед лечением физиотерапевт должен определиться с видом лучей. Обязательным условием является расчет лучевой нагрузки на больного. Нагрузка измеряется в биодозах. Расчет количества биодоз производится по методике Горбачева-Дальфельда. Она основывается на быстроте формирования покраснения кожного покрова. Одна биодоза способна вызывать минимальное покраснение с расстояния 50 см. Такая дозировка является эритемной.

Эритемные дозы подразделяются на:

  • малые (одна-две биодозы);
  • средние (три-четыре биодозы);
  • высокие (пять-восемь биодоз).

Если доза облучения больше восьми биодоз, то ее называют гиперэритемной. Подразделяют облучение на общее и местное. Общее может быть предназначено для одного человека или группы пациентов. Такое излучение продуцируют интегральные аппараты или источники длинных волн.

Детей необходимо облучать при помощи общего УФО очень аккуратно. Для ребенка и школьника применяется неполная биодоза. Начинают с самой маленькой дозировки.

При общем воздействии УФО-лучами новорожденных и очень слабых малышей на начальном этапе воздействуют 1/10–1/8 биодозы. У школьников и дошкольников используют 1/4 биодозы. Нагрузку со временем усиливают до 1 1/2- 1 3/4 биодозы. Эта дозировка остается на весь этап терапии. Сеансы проводят через сутки. Для лечения достаточно 10 сеансов.

Во время процедуры больного нужно раздеть, уложить на кушетку. Прибор ставят на расстоянии 50 см от поверхности тела пациента. Лампу следует накрыть тканью или одеялом вместе с пациентом. Это обеспечивает получение максимальной дозировки облучения. Если не закрывать одеялом, то часть лучей, исходящих от источника, рассеивается. Эффективность терапии при этом будет низкая.

Местное воздействие УФО осуществляют приборами смешанного типа, а также излучающими короткие волны УФ-спектра. Во время местной физиотерапии можно воздействовать на рефлексогенные зоны, облучать фракциями, полями, рядом с местом повреждения.

Местное облучение часто вызывает покраснение кожи, которое оказывает лечебный эффект. Чтобы правильно стимулировать образование эритемы, после ее появления следующие сеансы начинают после ее побледнения. Промежутки между физиопроцедурами составляют 1-3 суток. Дозировку при последующих сеансах увеличивают на треть и более.

Для неповрежденной кожи достаточно 5-6 физиопроцедур. Если на кожном покрове имеются гнойные поражения, пролежни, то облучать нужно до 12 сеансов. Для слизистых оболочек курсовая терапия составляет 10-12 сеансов.

Для детей местное использование УФО разрешается с рождения. Оно ограничивается по площади. У новорожденного ребенка площадь воздействия составляет 50 см2 и больше, для школьников не более 300 см2. Дозировка для эритемотерапии составляет 0,5-1 биодозы.

При острых респираторных заболеваниях производят обработку УФ слизистой носоглотки. Для этого используют специальные тубусы. Сеанс длится 1 минуту (взрослые), полминуты (дети). Курсовая терапия составляет 7 суток.

Грудную клетку облучают по полям. Продолжительность процедуры составляет 3-5 минут. Поля обрабатывают отдельно в разные дни. Сеансы осуществляют каждый день. Кратность облучения поля за курс 2-3 раза, для его выделения применяют клеенку или перфорированную ткань.

При насморке в острый период ультрафиолетовое воздействие осуществляют на ноги со стороны подошвы. Источник устанавливают на расстоянии 10 см. Курсовое лечение до 4 суток. Также делают облучение при помощи тубуса в нос и глотку. Первый сеанс длится 30 секунд. В дальнейшем терапию продлевают до 3 минут. Курсовая терапия составляет 6 сеансов.

При отите ультрафиолетовое воздействие осуществляют на место слухового прохода. Сеанс длится 3 минуты. Терапия включает 6 физиопроцедур. У пациентов с фарингитами, ларингитами, трахеитами облучение производят по передней верхней части грудной клетки. Количество процедур на курс составляет до 6.

При трахеите, фарингите, ангине можно делать облучение задней стенки глотки (горла) при помощи тубусов. Во время сеанса пациент должен говорить звук «а». Длительность физиопроцедуры 1-5 минут. Лечение проводят каждые 2 суток. Курсовая терапия составляет 6 сеансов.

Гнойничковые поражения кожи лечат путем УФО после обработки раневой поверхности. Источник ультрафиолета устанавливают на расстоянии 10 см. Длительность сеанса составляет 2-3 минуты. Лечение продолжается 3 суток.

Фурункулы и абсцессы облучают после вскрытия образования. Обработку осуществляют на расстоянии 10 см до поверхности тела. Продолжительность одной физиопроцедуры равна 3 минутам. Курсовая терапия 10 сеансов.

УФ-лечение в домашних условиях

Ультрафиолетовое облучение допустимо проводить дома. Для этого можно приобрести аппарат УФО в любом магазине медтехники. Для осуществления УФО-физиотерапии в домашних условиях разработан аппарат «Солнышко» (ОУФб-04). Он предназначен для местного воздействия на слизистые и кожу.

Для общего облучения можно приобрести ртутно-кварцевую лампу «Солнышко». Она заменит часть недостающего ультрафиолетового света зимой, обеззаразит воздух. Существуют также домашние облучатели для обуви, воды.

Прибор «Солнышко» для местного использования оснащен тубусом для носа, горла, обработки других частей тела. Аппарат имеет небольшие размеры. Перед приобретением следует убедиться в исправности прибора, наличия сертификатов и гарантий качества. Для уточнения правил применения аппарата необходимо прочитать инструкцию, или обратиться к лечащему доктору.

Заключение

Ультрафиолетовое излучение часто используют в медицине для терапии разных заболеваний. Помимо лечения, аппараты УФО можно применять для обеззараживания помещений. Их используют в больницах и дома. При правильном применении ламп облучение не наносит вреда, а эффективность лечения достаточно высокая.

Применение ультрафиолетового излучения мы чаще всего наблюдаем в косметических и медицинских целях. Также ультрафиолетовое излучение используется при печати, при обеззараживании и дезинфекции воды и воздуха, при необходимости полимеризации и изменения физического состояния материалов.

Ультрафиолетовое излечение – это вид излучения, который имеет определенную длину волны и занимает промежуточное положение между рентгеновским и фиолетовой зоной видимого излучения. Такое излучение является невидимым для человеческого глаза. Однако благодаря своим свойствам, такое излучение получило очень широкое распространение и применяется во многих областях.

В настоящее время многие ученые целенаправленно изучают действие ультрафиолетового излучения на многие процессы жизнедеятельности, в том числе обменные, регуляторные, трофические. Известно, что ультрафиолетовое излучение благотворно воздействует на организм при некоторых заболеваниях и нарушениях, способствуя лечению . Именно поэтому оно получило широкое применение в области медицины.

Благодаря трудам многих ученых было изучено воздействие ультрафиолетового излучения на биологические процессы в организме человека, чтобы можно было этими процессами управлять.

Защита от ультрафиолетового излучения является необходимой в тех случаях, когда кожа подвергается длительному воздействию солнечных лучей.

Считается, что именно ультрафиолетовые лучи ответственны за фотостарение кожи, а также за развитие канцерогенеза, поскольку при их воздействии образуется много свободных радикалов , пагубно влияющих на все процессы в организме.
К тому же, при применении ультрафиолетового излучения весьма велик риск повреждения цепей ДНК, а это уже может привести к очень трагическим последствиям и возникновению таких страшных заболеваний, как рак и другие.

А вы знаете, какие могут быть полезны для человека? О таких свойствах, а также о свойствах, ультрафиолетового излучения, позволяющих использовать его в различных производственных процессах вы сможете узнать все из нашей статьи.

У нас также доступен обзор . Прочитайте наш материал и вы поймете все основные различия между естественными и искусственными источниками света.

Основным естественным источником такого вида излучения является Солнце . А среди искусственных различают несколько видов:

  • Эритемные лампы (придуманы еще 60-х годах, используются, в основном, для компенсации недостаточности естественного ультрафиолетового излучения. Например, для предотвращения рахита у детей, для облучения молодого поколения сельскохозяйственных животных, в фотариях)
  • Ртутно-кварцевые лампы
  • Эксилампы
  • Бактерицидные лампы
  • Люминесцентные лампы
  • Светодиоды

Множество ламп, излучающих в ультрафиолетовом диапазоне предназначены для освещения помещений и других объектов, а принцип их действия связан с ультрафиолетовым излучением, которое разными способами преобразуется в видимый свет .

Способы генерирования ультрафиолетового излучения:

  • Температурное излучение (применяется в лампах накаливания)
  • Излучение, создающееся благодаря движущимся в электрическом поле газам и парам металлов (применяется в ртутных и газоразрядных лампах)
  • Люминесценция (применяется в эритемных, бактерицидных лампах)

Применение ультрафиолетового излучения в силу его свойств

Промышленность выпускает множество видов ламп для различных способов применения ультрафиолетового излучения:

  • Ртутные
  • Водородные
  • Ксеноновые

Основные свойства УФ — излучения, которые обуславливают его применение:

  • Высокая химическая активность (способствует ускорению многих химических реакций, а также ускорению биологических процессов в организме):
    Под воздействие ультрафиолетового излучения в коже образуется витамин D, серотонин, улучшается тонус и жизнедеятельность организма.
  • Способность убивать различные микроорганизмы (бактерицидное свойство):
    Использование ультрафиолетового бактерицидного излучения способствует дезинфекции воздуха, особенно в таких местах, где собирается много людей (больницы, школы, высшие учебные заведения, вокзалы, метро, большие магазины).
    Обеззараживание воды ультрафиолетовым излучением также пользуется большим спросом, поскольку дает неплохие результаты. При таком способе очистки вода не приобретает неприятный запах и вкус. Это великолепно подходит для очистки воды в рыбных хозяйствах, бассейнах.
    Часто используют метод ультрафиолетового обеззараживания при обработке хирургических инструментов .
  • Способность вызывать люминесценцию некоторых веществ:
    Благодаря такому свойству эксперты-криминалисты обнаруживают следы крови на различных предметах. А также благодаря специальной краске можно обнаруживать меченые купюры, которые применяют в операциях по борьбе с коррупцией.

Применение ультрафиолетового излучения фото

Ниже приводим фотографии по теме статьи «Применение ультрафиолетового излучения». Для открытия галереи фотографий достаточно нажать на миниатюру изображения.