Παραδείγματα τρεχόντων λογαρίθμων υπογραφής. Ιδιότητες λογαρίθμων και παραδείγματα λύσεών τους. The Comprehensive Guide (2019)

Ο λογάριθμος ενός θετικού αριθμού b στη βάση a (a>0, a δεν είναι ίσος με 1) είναι ένας αριθμός c τέτοιος ώστε a c = b: log a b = c ⇔ a c = b (a > 0, a ≠ 1, b > 0)       

Σημειώστε ότι ο λογάριθμος ενός μη θετικού αριθμού είναι απροσδιόριστος. Επιπλέον, η βάση του λογάριθμου πρέπει να είναι ένας θετικός αριθμός που δεν είναι ίσος με 1. Για παράδειγμα, αν τετραγωνίσουμε -2, παίρνουμε τον αριθμό 4, αλλά αυτό δεν σημαίνει ότι ο λογάριθμος στη βάση -2 του 4 είναι ίσο με 2.

Βασική λογαριθμική ταυτότητα

a log a b = b (a > 0, a ≠ 1) (2)

Είναι σημαντικό το εύρος του ορισμού της δεξιάς και της αριστερής πλευράς αυτού του τύπου να είναι διαφορετικό. Η αριστερή πλευρά ορίζεται μόνο για b>0, a>0 και a ≠ 1. Η δεξιά πλευρά ορίζεται για οποιοδήποτε b και δεν εξαρτάται καθόλου από το a. Έτσι, η εφαρμογή της βασικής λογαριθμικής «ταυτότητας» κατά την επίλυση εξισώσεων και ανισώσεων μπορεί να οδηγήσει σε αλλαγή στην ΟΔ.

Δύο προφανείς συνέπειες του ορισμού του λογάριθμου

log a a = 1 (a > 0, a ≠ 1) (3)
log a 1 = 0 (a > 0, a ≠ 1) (4)

Πράγματι, όταν ανεβάζουμε τον αριθμό α στην πρώτη δύναμη, παίρνουμε τον ίδιο αριθμό, και όταν τον ανεβάζουμε στη μηδενική ισχύ, παίρνουμε ένα.

Λογάριθμος του γινομένου και λογάριθμος του πηλίκου

log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0) (5)

Log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0) (6)

Θα ήθελα να προειδοποιήσω τους μαθητές να μην εφαρμόζουν αλόγιστα αυτούς τους τύπους κατά την επίλυση λογαριθμικές εξισώσειςκαι ανισότητες. Όταν τα χρησιμοποιείτε "από αριστερά προς τα δεξιά", το ODZ στενεύει και όταν μετακινείται από το άθροισμα ή τη διαφορά λογαρίθμων στον λογάριθμο του γινομένου ή του πηλίκου, το ODZ επεκτείνεται.

Πράγματι, η έκφραση log a (f (x) g (x)) ορίζεται σε δύο περιπτώσεις: όταν και οι δύο συναρτήσεις είναι αυστηρά θετικές ή όταν η f (x) και η g (x) είναι και οι δύο μικρότερες από το μηδέν.

Μετατρέποντας αυτήν την παράσταση στο άθροισμα log a f (x) + log a g (x), αναγκαζόμαστε να περιοριστούμε μόνο στην περίπτωση που f(x)>0 και g(x)>0. Υπάρχει μια στένωση του εύρους των αποδεκτών τιμών, και αυτό είναι κατηγορηματικά απαράδεκτο, καθώς μπορεί να οδηγήσει σε απώλεια λύσεων. Παρόμοιο πρόβλημα υπάρχει για τον τύπο (6).

Ο βαθμός μπορεί να αφαιρεθεί από το πρόσημο του λογαρίθμου

log a b p = p log a b (a > 0, a ≠ 1, b > 0) (7)

Και πάλι θα ήθελα να προτρέψω την προσοχή. Εξετάστε το ακόλουθο παράδειγμα:

Log a (f (x) 2 = 2 log a f (x)

Η αριστερή πλευρά της ισότητας ορίζεται προφανώς για όλες τις τιμές του f(x) εκτός από το μηδέν. Η δεξιά πλευρά είναι μόνο για f(x)>0! Βγάζοντας τον βαθμό από τον λογάριθμο, περιορίζουμε ξανά το ODZ. Η αντίστροφη διαδικασία οδηγεί σε επέκταση του εύρους των αποδεκτών τιμών. Όλες αυτές οι παρατηρήσεις ισχύουν όχι μόνο για την ισχύ 2, αλλά και για οποιαδήποτε άρτια δύναμη.

Φόρμουλα για μετάβαση σε νέα βάση

log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1) (8)

Αυτή η σπάνια περίπτωση όταν το ODZ δεν αλλάζει κατά τη διάρκεια του μετασχηματισμού. Εάν έχετε επιλέξει σοφά τη βάση c (θετική και όχι ίση με 1), η φόρμουλα για τη μετάβαση σε μια νέα βάση είναι απολύτως ασφαλής.

Εάν επιλέξουμε τον αριθμό b ως τη νέα βάση c, λαμβάνουμε μια σημαντική ειδική περίπτωση του τύπου (8):

Log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1) (9)

Μερικά απλά παραδείγματα με λογάριθμους

Παράδειγμα 1. Υπολογίστε: log2 + log50.
Διάλυμα. log2 + log50 = log100 = 2. Χρησιμοποιήσαμε το άθροισμα των λογαρίθμων τύπου (5) και τον ορισμό του δεκαδικού λογάριθμου.


Παράδειγμα 2. Υπολογίστε: lg125/lg5.
Διάλυμα. log125/log5 = log 5 125 = 3. Χρησιμοποιήσαμε τον τύπο για τη μετάβαση σε νέα βάση (8).

Πίνακας τύπων που σχετίζονται με λογάριθμους

a log a b = b (a > 0, a ≠ 1)
log a a = 1 (a > 0, a ≠ 1)
log a 1 = 0 (a > 0, a ≠ 1)
log a (b c) = log a b + log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b c = log a b − log a c (a > 0, a ≠ 1, b > 0, c > 0)
log a b p = p log a b (a > 0, a ≠ 1, b > 0)
log a b = log c b log c a (a > 0, a ≠ 1, b > 0, c > 0, c ≠ 1)
log a b = 1 log b a (a > 0, a ≠ 1, b > 0, b ≠ 1)

Η διατήρηση του απορρήτου σας είναι σημαντική για εμάς. Για το λόγο αυτό, έχουμε αναπτύξει μια Πολιτική Απορρήτου που περιγράφει τον τρόπο με τον οποίο χρησιμοποιούμε και αποθηκεύουμε τις πληροφορίες σας. Διαβάστε τις πρακτικές απορρήτου μας και ενημερώστε μας εάν έχετε ερωτήσεις.

Συλλογή και χρήση προσωπικών πληροφοριών

Οι προσωπικές πληροφορίες αναφέρονται σε δεδομένα που μπορούν να χρησιμοποιηθούν για την αναγνώριση ή επικοινωνία με ένα συγκεκριμένο άτομο.

Ενδέχεται να σας ζητηθεί να δώσετε τα προσωπικά σας στοιχεία ανά πάσα στιγμή όταν επικοινωνήσετε μαζί μας.

Ακολουθούν ορισμένα παραδείγματα των τύπων προσωπικών πληροφοριών που ενδέχεται να συλλέγουμε και πώς μπορούμε να χρησιμοποιήσουμε αυτές τις πληροφορίες.

Ποιες προσωπικές πληροφορίες συλλέγουμε:

  • Όταν υποβάλλετε μια αίτηση στον ιστότοπο, ενδέχεται να συλλέξουμε διάφορες πληροφορίες, όπως το όνομά σας, τον αριθμό τηλεφώνου, τη διεύθυνση email σας κ.λπ.

Πώς χρησιμοποιούμε τα προσωπικά σας στοιχεία:

  • Οι προσωπικές πληροφορίες που συλλέγουμε μας επιτρέπουν να επικοινωνήσουμε μαζί σας με μοναδικές προσφορές, προσφορές και άλλες εκδηλώσεις και επερχόμενες εκδηλώσεις.
  • Από καιρό σε καιρό, ενδέχεται να χρησιμοποιήσουμε τα προσωπικά σας στοιχεία για να στείλουμε σημαντικές ειδοποιήσεις και επικοινωνίες.
  • Ενδέχεται επίσης να χρησιμοποιήσουμε προσωπικές πληροφορίες για εσωτερικούς σκοπούς, όπως διεξαγωγή ελέγχων, ανάλυση δεδομένων και διάφορες έρευνες, προκειμένου να βελτιώσουμε τις υπηρεσίες που παρέχουμε και να σας παρέχουμε συστάσεις σχετικά με τις υπηρεσίες μας.
  • Εάν συμμετέχετε σε κλήρωση, διαγωνισμό ή παρόμοια προσφορά, ενδέχεται να χρησιμοποιήσουμε τις πληροφορίες που παρέχετε για τη διαχείριση τέτοιων προγραμμάτων.

Αποκάλυψη πληροφοριών σε τρίτους

Δεν αποκαλύπτουμε τις πληροφορίες που λαμβάνουμε από εσάς σε τρίτους.

Εξαιρέσεις:

  • Εάν είναι απαραίτητο, σύμφωνα με το νόμο, δικαστική διαδικασία, σε νομικές διαδικασίες και/ή βάσει δημόσιων ερευνών ή αιτημάτων από κρατικούς φορείςστο έδαφος της Ρωσικής Ομοσπονδίας - αποκαλύψτε τα προσωπικά σας στοιχεία. Ενδέχεται επίσης να αποκαλύψουμε πληροφορίες σχετικά με εσάς εάν κρίνουμε ότι αυτή η αποκάλυψη είναι απαραίτητη ή κατάλληλη για λόγους ασφάλειας, επιβολής του νόμου ή άλλους σκοπούς δημόσιας σημασίας.
  • Σε περίπτωση αναδιοργάνωσης, συγχώνευσης ή πώλησης, ενδέχεται να μεταφέρουμε τις προσωπικές πληροφορίες που συλλέγουμε στον κατάλληλο διάδοχο τρίτο.

Προστασία προσωπικών πληροφοριών

Λαμβάνουμε προφυλάξεις - συμπεριλαμβανομένων διοικητικών, τεχνικών και φυσικών - για την προστασία των προσωπικών σας δεδομένων από απώλεια, κλοπή και κακή χρήση, καθώς και από μη εξουσιοδοτημένη πρόσβαση, αποκάλυψη, τροποποίηση και καταστροφή.

Σεβασμός του απορρήτου σας σε εταιρικό επίπεδο

Για να διασφαλίσουμε ότι τα προσωπικά σας στοιχεία είναι ασφαλή, κοινοποιούμε τα πρότυπα απορρήτου και ασφάλειας στους υπαλλήλους μας και εφαρμόζουμε αυστηρά τις πρακτικές απορρήτου.

Η διατήρηση του απορρήτου σας είναι σημαντική για εμάς. Για το λόγο αυτό, έχουμε αναπτύξει μια Πολιτική Απορρήτου που περιγράφει τον τρόπο με τον οποίο χρησιμοποιούμε και αποθηκεύουμε τις πληροφορίες σας. Διαβάστε τις πρακτικές απορρήτου μας και ενημερώστε μας εάν έχετε ερωτήσεις.

Συλλογή και χρήση προσωπικών πληροφοριών

Οι προσωπικές πληροφορίες αναφέρονται σε δεδομένα που μπορούν να χρησιμοποιηθούν για την αναγνώριση ή επικοινωνία με ένα συγκεκριμένο άτομο.

Ενδέχεται να σας ζητηθεί να δώσετε τα προσωπικά σας στοιχεία ανά πάσα στιγμή όταν επικοινωνήσετε μαζί μας.

Ακολουθούν ορισμένα παραδείγματα των τύπων προσωπικών πληροφοριών που ενδέχεται να συλλέγουμε και πώς μπορούμε να χρησιμοποιήσουμε αυτές τις πληροφορίες.

Ποιες προσωπικές πληροφορίες συλλέγουμε:

  • Όταν υποβάλλετε μια αίτηση στον ιστότοπο, ενδέχεται να συλλέξουμε διάφορες πληροφορίες, όπως το όνομά σας, τον αριθμό τηλεφώνου, τη διεύθυνση email σας κ.λπ.

Πώς χρησιμοποιούμε τα προσωπικά σας στοιχεία:

  • Οι προσωπικές πληροφορίες που συλλέγουμε μας επιτρέπουν να επικοινωνήσουμε μαζί σας με μοναδικές προσφορές, προσφορές και άλλες εκδηλώσεις και επερχόμενες εκδηλώσεις.
  • Από καιρό σε καιρό, ενδέχεται να χρησιμοποιήσουμε τα προσωπικά σας στοιχεία για να στείλουμε σημαντικές ειδοποιήσεις και επικοινωνίες.
  • Ενδέχεται επίσης να χρησιμοποιήσουμε προσωπικές πληροφορίες για εσωτερικούς σκοπούς, όπως διεξαγωγή ελέγχων, ανάλυση δεδομένων και διάφορες έρευνες, προκειμένου να βελτιώσουμε τις υπηρεσίες που παρέχουμε και να σας παρέχουμε συστάσεις σχετικά με τις υπηρεσίες μας.
  • Εάν συμμετέχετε σε κλήρωση, διαγωνισμό ή παρόμοια προσφορά, ενδέχεται να χρησιμοποιήσουμε τις πληροφορίες που παρέχετε για τη διαχείριση τέτοιων προγραμμάτων.

Αποκάλυψη πληροφοριών σε τρίτους

Δεν αποκαλύπτουμε τις πληροφορίες που λαμβάνουμε από εσάς σε τρίτους.

Εξαιρέσεις:

  • Εάν είναι απαραίτητο - σύμφωνα με το νόμο, τη δικαστική διαδικασία, σε νομικές διαδικασίες ή/και βάσει δημόσιων αιτημάτων ή αιτημάτων από κυβερνητικούς φορείς στη Ρωσική Ομοσπονδία - να αποκαλύψετε τα προσωπικά σας στοιχεία. Ενδέχεται επίσης να αποκαλύψουμε πληροφορίες σχετικά με εσάς εάν κρίνουμε ότι αυτή η αποκάλυψη είναι απαραίτητη ή κατάλληλη για λόγους ασφάλειας, επιβολής του νόμου ή άλλους σκοπούς δημόσιας σημασίας.
  • Σε περίπτωση αναδιοργάνωσης, συγχώνευσης ή πώλησης, ενδέχεται να μεταφέρουμε τις προσωπικές πληροφορίες που συλλέγουμε στον κατάλληλο διάδοχο τρίτο.

Προστασία προσωπικών πληροφοριών

Λαμβάνουμε προφυλάξεις - συμπεριλαμβανομένων διοικητικών, τεχνικών και φυσικών - για την προστασία των προσωπικών σας δεδομένων από απώλεια, κλοπή και κακή χρήση, καθώς και από μη εξουσιοδοτημένη πρόσβαση, αποκάλυψη, τροποποίηση και καταστροφή.

Σεβασμός του απορρήτου σας σε εταιρικό επίπεδο

Για να διασφαλίσουμε ότι τα προσωπικά σας στοιχεία είναι ασφαλή, κοινοποιούμε τα πρότυπα απορρήτου και ασφάλειας στους υπαλλήλους μας και εφαρμόζουμε αυστηρά τις πρακτικές απορρήτου.

Λογάριθμος του αριθμού b (b > 0) στη βάση του a (a > 0, a ≠ 1)– εκθέτης στον οποίο πρέπει να αυξηθεί ο αριθμός a για να ληφθεί b.

Ο λογάριθμος βάσης 10 του b μπορεί να γραφτεί ως ημερολόγιο (β), και ο λογάριθμος στη βάση e (φυσικός λογάριθμος) είναι ln(b).

Συχνά χρησιμοποιείται κατά την επίλυση προβλημάτων με λογάριθμους:

Ιδιότητες λογαρίθμων

Υπάρχουν τέσσερις κύριες ιδιότητες των λογαρίθμων.

Έστω a > 0, a ≠ 1, x > 0 και y > 0.

Ιδιότητα 1. Λογάριθμος του προϊόντος

Λογάριθμος του προϊόντος ίσο με το άθροισμαλογάριθμοι:

log a (x ⋅ y) = log a x + log a y

Ιδιότητα 2. Λογάριθμος του πηλίκου

Λογάριθμος του πηλίκουίση με τη διαφορά των λογαρίθμων:

log a (x / y) = log a x – log a y

Ιδιότητα 3. Λογάριθμος ισχύος

Λογάριθμος βαθμούίσο με το γινόμενο της ισχύος και του λογάριθμου:

Εάν η βάση του λογάριθμου είναι στην ισχύ, τότε ισχύει ένας άλλος τύπος:

Ιδιότητα 4. Λογάριθμος ρίζας

Αυτή η ιδιότητα μπορεί να ληφθεί από την ιδιότητα του λογάριθμου μιας δύναμης, καθώς η nη ρίζα της ισχύος είναι ίση με την ισχύ του 1/n:

Τύπος μετατροπής από λογάριθμο σε μια βάση σε λογάριθμο σε άλλη βάση

Αυτός ο τύπος χρησιμοποιείται επίσης συχνά για επίλυση διάφορα καθήκονταστους λογάριθμους:

Ειδική περίπτωση:

Σύγκριση λογαρίθμων (ανισότητες)

Ας έχουμε 2 συναρτήσεις f(x) και g(x) σε λογάριθμους με τις ίδιες βάσεις και μεταξύ τους υπάρχει πρόσημο ανισότητας:

Για να τα συγκρίνετε, πρέπει πρώτα να δείτε τη βάση των λογαρίθμων:

  • Αν a > 0, τότε f(x) > g(x) > 0
  • Αν 0< a < 1, то 0 < f(x) < g(x)

Πώς να λύσετε προβλήματα με λογάριθμους: παραδείγματα

Προβλήματα με λογαρίθμουςπου περιλαμβάνονται στην Ενιαία Κρατική Εξέταση στα μαθηματικά για την τάξη 11 στην εργασία 5 και την εργασία 7, μπορείτε να βρείτε εργασίες με λύσεις στον ιστότοπό μας στις κατάλληλες ενότητες. Επίσης, εργασίες με λογάριθμους βρίσκονται στην τράπεζα μαθηματικών εργασιών. Μπορείτε να βρείτε όλα τα παραδείγματα κάνοντας αναζήτηση στον ιστότοπο.

Τι είναι ο λογάριθμος

Οι λογάριθμοι θεωρούνταν πάντα ένα δύσκολο θέμα σχολικό μάθημαμαθηματικά. Υπάρχουν πολλοί διαφορετικοί ορισμοί του λογάριθμου, αλλά για κάποιο λόγο τα περισσότερα σχολικά βιβλία χρησιμοποιούν τον πιο περίπλοκο και ανεπιτυχή από αυτούς.

Θα ορίσουμε τον λογάριθμο απλά και ξεκάθαρα. Για να γίνει αυτό, ας δημιουργήσουμε έναν πίνακα:

Άρα, έχουμε δυνάμεις δύο.

Λογάριθμοι - ιδιότητες, τύποι, τρόπος επίλυσης

Εάν πάρετε τον αριθμό από την κάτω γραμμή, μπορείτε εύκολα να βρείτε τη δύναμη στην οποία θα πρέπει να αυξήσετε δύο για να λάβετε αυτόν τον αριθμό. Για παράδειγμα, για να πάρετε 16, πρέπει να αυξήσετε δύο στην τέταρτη δύναμη. Και για να πάρετε 64, πρέπει να αυξήσετε δύο στην έκτη δύναμη. Αυτό φαίνεται από τον πίνακα.

Και τώρα - στην πραγματικότητα, ο ορισμός του λογάριθμου:

η βάση a του ορίσματος x είναι η δύναμη στην οποία πρέπει να αυξηθεί ο αριθμός a για να ληφθεί ο αριθμός x.

Ονομασία: log a x = b, όπου a είναι η βάση, x είναι το όρισμα, b είναι αυτό με το οποίο ισούται πραγματικά ο λογάριθμος.

Για παράδειγμα, 2 3 = 8 ⇒log 2 8 = 3 (ο λογάριθμος βάσης 2 του 8 είναι τρεις επειδή 2 3 = 8). Με την ίδια επιτυχία, log 2 64 = 6, αφού 2 6 = 64.

Η πράξη εύρεσης του λογάριθμου ενός αριθμού σε μια δεδομένη βάση ονομάζεται. Λοιπόν, ας προσθέσουμε μια νέα γραμμή στον πίνακα μας:

2 1 2 2 2 3 2 4 2 5 2 6
2 4 8 16 32 64
ημερολόγιο 2 2 = 1 ημερολόγιο 2 4 = 2 ημερολόγιο 2 8 = 3 ημερολόγιο 2 16 = 4 ημερολόγιο 2 32 = 5 ημερολόγιο 2 64 = 6

Δυστυχώς, δεν υπολογίζονται όλοι οι λογάριθμοι τόσο εύκολα. Για παράδειγμα, προσπαθήστε να βρείτε το αρχείο καταγραφής 2 5. Ο αριθμός 5 δεν βρίσκεται στον πίνακα, αλλά η λογική υπαγορεύει ότι ο λογάριθμος θα βρίσκεται κάπου στο διάστημα. Επειδή 2 2< 5 < 2 3 , а чем περισσότερο πτυχίοδύο, τόσο μεγαλύτερος είναι ο αριθμός.

Αυτοί οι αριθμοί ονομάζονται παράλογοι: οι αριθμοί μετά την υποδιαστολή μπορούν να γραφτούν επ' άπειρον και δεν επαναλαμβάνονται ποτέ. Εάν ο λογάριθμος αποδειχθεί παράλογος, είναι καλύτερα να τον αφήσετε έτσι: log 2 5, log 3 8, log 5 100.

Είναι σημαντικό να κατανοήσουμε ότι ένας λογάριθμος είναι μια έκφραση με δύο μεταβλητές (τη βάση και το όρισμα). Στην αρχή, πολλοί άνθρωποι μπερδεύουν πού είναι η βάση και πού είναι το επιχείρημα. Για να αποφύγετε ενοχλητικές παρεξηγήσεις, απλά δείτε την εικόνα:

Μπροστά μας δεν υπάρχει τίποτα άλλο από τον ορισμό του λογάριθμου. Θυμάμαι: ο λογάριθμος είναι δύναμη, στην οποία πρέπει να ενσωματωθεί η βάση για να ληφθεί ένα όρισμα. Είναι η βάση που ανυψώνεται σε δύναμη - επισημαίνεται με κόκκινο χρώμα στην εικόνα. Αποδεικνύεται ότι η βάση είναι πάντα στο κάτω μέρος! Λέω στους μαθητές μου αυτόν τον υπέροχο κανόνα στο πρώτο μάθημα - και δεν δημιουργείται σύγχυση.

Πώς να μετρήσετε τους λογάριθμους

Καταλάβαμε τον ορισμό - το μόνο που μένει είναι να μάθουμε πώς να μετράμε λογάριθμους, δηλ. απαλλαγείτε από το σημάδι "κούτσουρο". Αρχικά, σημειώνουμε ότι δύο σημαντικά στοιχεία προκύπτουν από τον ορισμό:

  1. Το όρισμα και η βάση πρέπει πάντα να είναι μεγαλύτερα από το μηδέν. Αυτό προκύπτει από τον ορισμό ενός βαθμού από έναν ορθολογικό εκθέτη, στον οποίο ανάγεται ο ορισμός ενός λογάριθμου.
  2. Η βάση πρέπει να είναι διαφορετική από τη μία, αφού η μία σε οποιοδήποτε βαθμό παραμένει μία. Εξαιτίας αυτού, το ερώτημα «σε ποια δύναμη πρέπει να υψωθεί κανείς για να πάρει δύο» είναι άνευ σημασίας. Δεν υπάρχει τέτοιο πτυχίο!

Τέτοιοι περιορισμοί ονομάζονται εύρος αποδεκτών τιμών(ΟΔΖ). Αποδεικνύεται ότι το ODZ του λογαρίθμου μοιάζει με αυτό: log a x = b ⇒x > 0, a > 0, a ≠ 1.

Σημειώστε ότι δεν υπάρχουν περιορισμοί στον αριθμό b (την τιμή του λογάριθμου). Για παράδειγμα, ο λογάριθμος μπορεί κάλλιστα να είναι αρνητικός: log 2 0,5 = −1, επειδή 0,5 = 2 −1.

Ωστόσο, τώρα εξετάζουμε μόνο αριθμητικές εκφράσεις, όπου δεν απαιτείται να γνωρίζουμε το VA του λογαρίθμου. Όλοι οι περιορισμοί έχουν ήδη ληφθεί υπόψη από τους συντάκτες των προβλημάτων. Αλλά όταν μπαίνουν στο παιχνίδι λογαριθμικές εξισώσεις και ανισότητες, οι απαιτήσεις DL θα γίνουν υποχρεωτικές. Άλλωστε, η βάση και το επιχείρημα μπορεί να περιέχουν πολύ ισχυρές κατασκευές που δεν ανταποκρίνονται απαραίτητα στους παραπάνω περιορισμούς.

Τώρα ας δούμε το γενικό σχήμα για τον υπολογισμό των λογαρίθμων. Αποτελείται από τρία βήματα:

  1. Να εκφράσετε τη βάση α και το όρισμα x ως δύναμη με την ελάχιστη δυνατή βάση μεγαλύτερη από το ένα. Στην πορεία, είναι καλύτερα να απαλλαγείτε από τα δεκαδικά.
  2. Λύστε την εξίσωση για τη μεταβλητή b: x = a b ;
  3. Ο αριθμός β που προκύπτει θα είναι η απάντηση.

Αυτό είναι όλο! Εάν ο λογάριθμος αποδειχθεί παράλογος, αυτό θα είναι ορατό ήδη στο πρώτο βήμα. Η απαίτηση να είναι η βάση μεγαλύτερη από μία είναι πολύ σημαντική: αυτό μειώνει την πιθανότητα λάθους και απλοποιεί σημαντικά τους υπολογισμούς. Το ίδιο και με δεκαδικά: αν τα μετατρέψετε αμέσως σε κανονικά, θα υπάρξουν πολύ λιγότερα σφάλματα.

Ας δούμε πώς λειτουργεί αυτό το σχήμα χρησιμοποιώντας συγκεκριμένα παραδείγματα:

Εργο. Υπολογίστε τον λογάριθμο: log 5 25

  1. Ας φανταστούμε τη βάση και το όρισμα ως δύναμη του πέντε: 5 = 5 1 ; 25 = 5 2 ;
  2. Ας δημιουργήσουμε και λύνουμε την εξίσωση:
    log 5 25 = b ⇒(5 1) b = 5 2 ⇒5 b = 5 2 ⇒ b = 2;

  3. Λάβαμε την απάντηση: 2.

Εργο. Υπολογίστε τον λογάριθμο:

Εργο. Υπολογίστε τον λογάριθμο: log 4 64

  1. Ας φανταστούμε τη βάση και το όρισμα ως δύναμη δύο: 4 = 2 2 ; 64 = 2 6 ;
  2. Ας δημιουργήσουμε και λύνουμε την εξίσωση:
    log 4 64 = b ⇒(2 2) b = 2 6 ⇒2 2b = 2 6 ⇒2b = 6 ⇒ b = 3;
  3. Λάβαμε την απάντηση: 3.

Εργο. Υπολογίστε τον λογάριθμο: log 16 1

  1. Ας φανταστούμε τη βάση και το όρισμα ως δύναμη δύο: 16 = 2 4 ; 1 = 2 0 ;
  2. Ας δημιουργήσουμε και λύνουμε την εξίσωση:
    log 16 1 = b ⇒(2 4) b = 2 0 ⇒2 4b = 2 0 ⇒4b = 0 ⇒ b = 0;
  3. Λάβαμε την απάντηση: 0.

Εργο. Υπολογίστε τον λογάριθμο: log 7 14

  1. Ας φανταστούμε τη βάση και το όρισμα ως δύναμη του επτά: 7 = 7 1 ; Το 14 δεν μπορεί να αναπαρασταθεί ως δύναμη του επτά, αφού το 7 1< 14 < 7 2 ;
  2. Από την προηγούμενη παράγραφο προκύπτει ότι ο λογάριθμος δεν μετράει.
  3. Η απάντηση είναι καμία αλλαγή: ημερολόγιο 7 14.

Μια μικρή σημείωση για το τελευταίο παράδειγμα. Πώς μπορείτε να είστε σίγουροι ότι ένας αριθμός δεν είναι ακριβής δύναμη ενός άλλου αριθμού; Είναι πολύ απλό - απλά χωρίστε το σε πρωταρχικούς παράγοντες. Εάν η επέκταση έχει τουλάχιστον δύο διαφορετικούς παράγοντες, ο αριθμός δεν είναι ακριβής ισχύς.

Εργο. Μάθετε αν οι αριθμοί είναι ακριβείς δυνάμεις: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - ακριβής βαθμός, επειδή υπάρχει μόνο ένας πολλαπλασιαστής.
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - δεν είναι ακριβής δύναμη, αφού υπάρχουν δύο παράγοντες: 3 και 2.
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - ακριβής βαθμός.
35 = 7 · 5 - και πάλι δεν είναι ακριβής ισχύς.
14 = 7 · 2 - και πάλι όχι ακριβής βαθμός.

Ας σημειώσουμε επίσης ότι εμείς οι ίδιοι πρώτους αριθμούςείναι πάντα ακριβείς βαθμοί του εαυτού τους.

Δεκαδικός λογάριθμος

Μερικοί λογάριθμοι είναι τόσο συνηθισμένοι που έχουν ειδικό όνομα και σύμβολο.

του ορίσματος x είναι ο λογάριθμος στη βάση του 10, δηλ. Η ισχύς στην οποία πρέπει να αυξηθεί ο αριθμός 10 για να ληφθεί ο αριθμός x. Ονομασία: lg x.

Για παράδειγμα, log 10 = 1; lg 100 = 2; lg 1000 = 3 - κ.λπ.

Από εδώ και στο εξής, όταν εμφανίζεται μια φράση όπως "Find lg 0.01" σε ένα σχολικό βιβλίο, να ξέρετε: αυτό δεν είναι τυπογραφικό λάθος. Αυτός είναι ένας δεκαδικός λογάριθμος. Ωστόσο, εάν δεν είστε εξοικειωμένοι με αυτόν τον συμβολισμό, μπορείτε πάντα να τον ξαναγράψετε:
log x = log 10 x

Ό,τι ισχύει για τους συνηθισμένους λογάριθμους ισχύει και για τους δεκαδικούς λογάριθμους.

Φυσικός λογάριθμος

Υπάρχει ένας άλλος λογάριθμος που έχει τη δική του ονομασία. Κατά κάποιο τρόπο, είναι ακόμη πιο σημαντικό από το δεκαδικό. Μιλάμε για τον φυσικό λογάριθμο.

του ορίσματος x είναι ο λογάριθμος στη βάση του e, δηλ. η δύναμη στην οποία πρέπει να αυξηθεί ο αριθμός e για να ληφθεί ο αριθμός x. Ονομασία: ln x.

Πολλοί θα ρωτήσουν: ποιος είναι ο αριθμός e; Αυτός είναι ένας παράλογος αριθμός, είναι ακριβής τιμήαδύνατο να βρεθεί και να καταγραφεί. Θα δώσω μόνο τα πρώτα στοιχεία:
e = 2,718281828459…

Δεν θα αναφερθούμε σε λεπτομέρειες σχετικά με το τι είναι αυτός ο αριθμός και γιατί χρειάζεται. Απλώς θυμηθείτε ότι το e είναι η βάση του φυσικού λογάριθμου:
ln x = log e x

Έτσι ln e = 1; ln e 2 = 2; ln e 16 = 16 - κ.λπ. Από την άλλη πλευρά, το ln 2 είναι ένας παράλογος αριθμός. Γενικά, ο φυσικός λογάριθμος οποιουδήποτε ρητού αριθμού είναι παράλογος. Εκτός, φυσικά, από ένα: ln 1 = 0.

Για φυσικούς λογάριθμουςισχύουν όλοι οι κανόνες που ισχύουν για τους συνηθισμένους λογάριθμους.

Δείτε επίσης:

Λογάριθμος. Ιδιότητες του λογαρίθμου (ισχύς του λογαρίθμου).

Πώς να αναπαραστήσετε έναν αριθμό ως λογάριθμο;

Χρησιμοποιούμε τον ορισμό του λογάριθμου.

Ένας λογάριθμος είναι ένας εκθέτης στον οποίο πρέπει να αυξηθεί η βάση για να ληφθεί ο αριθμός κάτω από το πρόσημο του λογάριθμου.

Έτσι, για να αναπαραστήσετε έναν ορισμένο αριθμό c ως λογάριθμο στη βάση a, πρέπει να βάλετε μια δύναμη με την ίδια βάση με τη βάση του λογαρίθμου κάτω από το πρόσημο του λογαρίθμου και να γράψετε αυτόν τον αριθμό c ως εκθέτη:

Απολύτως οποιοσδήποτε αριθμός μπορεί να αναπαρασταθεί ως λογάριθμος - θετικός, αρνητικός, ακέραιος, κλασματικός, ορθολογικός, παράλογος:

Για να μην μπερδεύετε το α και το γ κάτω από αγχωτικές συνθήκες ενός τεστ ή μιας εξέτασης, μπορείτε να χρησιμοποιήσετε τον ακόλουθο κανόνα απομνημόνευσης:

ότι είναι κάτω κατεβαίνει, ό,τι είναι πάνω ανεβαίνει.

Για παράδειγμα, πρέπει να αναπαραστήσετε τον αριθμό 2 ως λογάριθμο στη βάση 3.

Έχουμε δύο αριθμούς - 2 και 3. Αυτοί οι αριθμοί είναι η βάση και ο εκθέτης, που θα γράψουμε κάτω από το πρόσημο του λογαρίθμου. Απομένει να καθοριστεί ποιος από αυτούς τους αριθμούς θα πρέπει να γραφεί, στη βάση του βαθμού και ποιος - επάνω, στον εκθέτη.

Η βάση 3 στη σημειογραφία ενός λογάριθμου βρίσκεται στο κάτω μέρος, πράγμα που σημαίνει ότι όταν αντιπροσωπεύουμε δύο ως λογάριθμο στη βάση 3, θα γράψουμε επίσης το 3 στη βάση.

Το 2 είναι υψηλότερο από το τρία. Και σε σημειογραφία του βαθμού δύο γράφουμε πάνω από τα τρία, δηλαδή ως εκθέτη:

Λογάριθμοι. επίπεδο εισόδου.

Λογάριθμοι

Λογάριθμοςθετικός αριθμός σιμε βάση ένα, Πού a > 0, a ≠ 1, ονομάζεται ο εκθέτης στον οποίο πρέπει να αυξηθεί ο αριθμός ένανα πάρει σι.

Ορισμός λογάριθμουμπορεί να γραφτεί εν συντομία ως εξής:

Αυτή η ισότητα ισχύει για b > 0, a > 0, a ≠ 1.Συνήθως λέγεται λογαριθμική ταυτότητα.
Η ενέργεια εύρεσης του λογάριθμου ενός αριθμού ονομάζεται κατά λογάριθμο.

Ιδιότητες λογαρίθμων:

Λογάριθμος του προϊόντος:

Λογάριθμος του πηλίκου:

Αντικατάσταση της λογαριθμικής βάσης:

Λογάριθμος βαθμού:

Λογάριθμος της ρίζας:

Λογάριθμος με βάση ισχύος:





Δεκαδικοί και φυσικοί λογάριθμοι.

Δεκαδικός λογάριθμοςοι αριθμοί καλούν τον λογάριθμο αυτού του αριθμού στη βάση 10 και γράφουν   lg σι
Φυσικός λογάριθμοςαριθμοί ονομάζονται λογάριθμος αυτού του αριθμού στη βάση μι, Πού μι- ένας παράλογος αριθμός περίπου ίσος με 2,7. Ταυτόχρονα γράφουν ln σι.

Άλλες σημειώσεις για την άλγεβρα και τη γεωμετρία

Βασικές ιδιότητες των λογαρίθμων

Βασικές ιδιότητες των λογαρίθμων

Οι λογάριθμοι, όπως κάθε αριθμός, μπορούν να προστεθούν, να αφαιρεθούν και να μετασχηματιστούν με κάθε τρόπο. Επειδή όμως οι λογάριθμοι δεν είναι ακριβώς συνηθισμένοι αριθμοί, υπάρχουν κανόνες εδώ, οι οποίοι καλούνται κύριες ιδιότητες.

Πρέπει οπωσδήποτε να γνωρίζετε αυτούς τους κανόνες - χωρίς αυτούς, δεν μπορεί να λυθεί ούτε ένα σοβαρό λογαριθμικό πρόβλημα. Επιπλέον, υπάρχουν πολύ λίγα από αυτά - μπορείτε να μάθετε τα πάντα σε μια μέρα. Ας ξεκινήσουμε λοιπόν.

Πρόσθεση και αφαίρεση λογαρίθμων

Θεωρήστε δύο λογάριθμους με τις ίδιες βάσεις: log a x και log a y. Στη συνέχεια μπορούν να προστεθούν και να αφαιρεθούν και:

  1. log a x + log a y = log a (x y);
  2. log a x − log a y = log a (x: y).

Άρα, το άθροισμα των λογαρίθμων είναι ίσο με τον λογάριθμο του γινομένου και η διαφορά είναι ίση με τον λογάριθμο του πηλίκου. Παρακαλώ σημειώστε: το βασικό σημείο εδώ είναι πανομοιότυπους λόγους. Εάν οι λόγοι είναι διαφορετικοί, αυτοί οι κανόνες δεν λειτουργούν!

Αυτοί οι τύποι θα σας βοηθήσουν να υπολογίσετε λογαριθμική έκφρασηακόμη και όταν τα επιμέρους μέρη του δεν υπολογίζονται (δείτε το μάθημα «Τι είναι λογάριθμος»). Ρίξτε μια ματιά στα παραδείγματα και δείτε:

Μητρώο 6 4 + ημερολόγιο 6 9.

Εφόσον οι λογάριθμοι έχουν τις ίδιες βάσεις, χρησιμοποιούμε τον τύπο αθροίσματος:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Εργο. Βρείτε την τιμή της παράστασης: log 2 48 − log 2 3.

Οι βάσεις είναι ίδιες, χρησιμοποιούμε τον τύπο διαφοράς:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Εργο. Βρείτε την τιμή της παράστασης: log 3 135 − log 3 5.

Και πάλι οι βάσεις είναι ίδιες, οπότε έχουμε:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Όπως μπορείτε να δείτε, οι αρχικές εκφράσεις αποτελούνται από «κακούς» λογάριθμους, οι οποίοι δεν υπολογίζονται χωριστά. Όμως μετά τους μετασχηματισμούς προκύπτουν εντελώς κανονικοί αριθμοί. Πολλοί βασίζονται σε αυτό το γεγονός δοκιμές. Ναι, οι εκφράσεις που μοιάζουν με τεστ προσφέρονται με κάθε σοβαρότητα (μερικές φορές χωρίς σχεδόν καμία αλλαγή) στην Εξέταση Ενιαίου Κράτους.

Εξαγωγή του εκθέτη από τον λογάριθμο

Τώρα ας περιπλέκουμε λίγο το έργο. Τι γίνεται αν η βάση ή το όρισμα ενός λογαρίθμου είναι δύναμη; Τότε ο εκθέτης αυτού του βαθμού μπορεί να αφαιρεθεί από το πρόσημο του λογαρίθμου σύμφωνα με τους ακόλουθους κανόνες:

Είναι εύκολο να δει κανείς ότι ο τελευταίος κανόνας ακολουθεί τους δύο πρώτους. Αλλά είναι καλύτερα να το θυμάστε ούτως ή άλλως - σε ορισμένες περιπτώσεις θα μειώσει σημαντικά τον αριθμό των υπολογισμών.

Φυσικά, όλοι αυτοί οι κανόνες έχουν νόημα αν παρατηρηθεί το ODZ του λογαρίθμου: a > 0, a ≠ 1, x > 0. Και κάτι ακόμα: μάθετε να εφαρμόζετε όλους τους τύπους όχι μόνο από αριστερά προς τα δεξιά, αλλά και αντίστροφα , δηλ. Μπορείτε να εισάγετε τους αριθμούς πριν από το σύμβολο του λογάριθμου στον ίδιο τον λογάριθμο.

Πώς να λύσετε λογάριθμους

Αυτό είναι που απαιτείται συχνότερα.

Εργο. Βρείτε την τιμή της παράστασης: log 7 49 6 .

Ας απαλλαγούμε από το βαθμό στο όρισμα χρησιμοποιώντας τον πρώτο τύπο:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Εργο. Βρείτε το νόημα της έκφρασης:

Σημειώστε ότι ο παρονομαστής περιέχει έναν λογάριθμο, η βάση και το όρισμα του οποίου είναι ακριβείς δυνάμεις: 16 = 2 4 ; 49 = 7 2. Έχουμε:

Νομίζω ότι το τελευταίο παράδειγμα απαιτεί κάποια διευκρίνιση. Πού πήγαν οι λογάριθμοι; Μέχρι το πολύ τελευταία στιγμήδουλεύουμε μόνο με τον παρονομαστή. Παρουσιάσαμε τη βάση και το όρισμα του λογάριθμου που στέκεται εκεί με τη μορφή δυνάμεων και βγάλαμε τους εκθέτες - πήραμε ένα κλάσμα "τριώροφο".

Τώρα ας δούμε το κύριο κλάσμα. Ο αριθμητής και ο παρονομαστής περιέχουν τον ίδιο αριθμό: log 2 7. Εφόσον το log 2 7 ≠ 0, μπορούμε να μειώσουμε το κλάσμα - τα 2/4 θα παραμείνουν στον παρονομαστή. Σύμφωνα με τους κανόνες της αριθμητικής, τα τέσσερα μπορούν να μεταφερθούν στον αριθμητή, πράγμα που έγινε. Το αποτέλεσμα ήταν η απάντηση: 2.

Μετάβαση σε νέα βάση

Μιλώντας για τους κανόνες πρόσθεσης και αφαίρεσης λογαρίθμων, τόνισα συγκεκριμένα ότι λειτουργούν μόνο με τις ίδιες βάσεις. Κι αν οι λόγοι είναι διαφορετικοί; Τι γίνεται αν δεν είναι ακριβείς δυνάμεις του ίδιου αριθμού;

Οι φόρμουλες για τη μετάβαση σε ένα νέο θεμέλιο έρχονται στη διάσωση. Ας τα διατυπώσουμε με τη μορφή ενός θεωρήματος:

Ας δοθεί το λογάριθμο log a x. Τότε για οποιονδήποτε αριθμό c τέτοιο ώστε c > 0 και c ≠ 1, η ισότητα είναι αληθής:

Συγκεκριμένα, αν θέσουμε c = x, παίρνουμε:

Από τον δεύτερο τύπο προκύπτει ότι η βάση και το όρισμα του λογάριθμου μπορούν να αντικατασταθούν, αλλά σε αυτήν την περίπτωση ολόκληρη η έκφραση "αναποδογυρίζεται", δηλ. ο λογάριθμος εμφανίζεται στον παρονομαστή.

Αυτοί οι τύποι σπάνια βρίσκονται σε συμβατικές αριθμητικές εκφράσεις. Είναι δυνατό να αξιολογηθεί πόσο βολικές είναι μόνο όταν επιλύονται λογαριθμικές εξισώσεις και ανισώσεις.

Ωστόσο, υπάρχουν προβλήματα που δεν μπορούν να λυθούν καθόλου παρά μόνο με τη μετάβαση σε ένα νέο θεμέλιο. Ας δούμε μερικά από αυτά:

Εργο. Βρείτε την τιμή της παράστασης: log 5 16 log 2 25.

Σημειώστε ότι τα ορίσματα και των δύο λογαρίθμων περιέχουν ακριβείς δυνάμεις. Ας βγάλουμε τους δείκτες: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Τώρα ας «αντιστρέψουμε» τον δεύτερο λογάριθμο:

Δεδομένου ότι το γινόμενο δεν αλλάζει κατά την αναδιάταξη των παραγόντων, πολλαπλασιάσαμε ήρεμα τέσσερα και δύο και στη συνέχεια ασχοληθήκαμε με τους λογάριθμους.

Εργο. Βρείτε την τιμή της παράστασης: log 9 100 lg 3.

Η βάση και το όρισμα του πρώτου λογάριθμου είναι ακριβείς δυνάμεις. Ας το γράψουμε αυτό και ας απαλλαγούμε από τους δείκτες:

Τώρα ας απαλλαγούμε από τον δεκαδικό λογάριθμο μεταβαίνοντας σε μια νέα βάση:

Βασική λογαριθμική ταυτότητα

Συχνά στη διαδικασία επίλυσης είναι απαραίτητο να αναπαραστήσουμε έναν αριθμό ως λογάριθμο σε μια δεδομένη βάση.

Σε αυτήν την περίπτωση, οι παρακάτω τύποι θα μας βοηθήσουν:

Στην πρώτη περίπτωση, ο αριθμός n γίνεται ο εκθέτης στο όρισμα. Ο αριθμός n μπορεί να είναι απολύτως οτιδήποτε, γιατί είναι απλώς μια λογαριθμική τιμή.

Ο δεύτερος τύπος είναι στην πραγματικότητα ένας παραφρασμένος ορισμός. Έτσι λέγεται: .

Στην πραγματικότητα, τι συμβαίνει εάν ο αριθμός b αυξηθεί σε τέτοια δύναμη που ο αριθμός b σε αυτή τη δύναμη να δώσει τον αριθμό a; Αυτό είναι σωστό: το αποτέλεσμα είναι ο ίδιος αριθμός α. Διαβάστε ξανά προσεκτικά αυτήν την παράγραφο - πολλοί άνθρωποι κολλάνε σε αυτήν.

Όπως οι τύποι για τη μετάβαση σε μια νέα βάση, η βασική λογαριθμική ταυτότητα είναι μερικές φορές η μόνη δυνατή λύση.

Εργο. Βρείτε το νόημα της έκφρασης:

Σημειώστε ότι log 25 64 = log 5 8 - απλά πήραμε το τετράγωνο από τη βάση και το όρισμα του λογαρίθμου. Λαμβάνοντας υπόψη τους κανόνες για τον πολλαπλασιασμό των δυνάμεων με την ίδια βάση, παίρνουμε:

Αν κάποιος δεν ξέρει, αυτή ήταν μια πραγματική εργασία από την Ενιαία Κρατική Εξέταση :)

Λογαριθμική μονάδα και λογαριθμικό μηδέν

Εν κατακλείδι, θα δώσω δύο ταυτότητες που δύσκολα μπορούν να ονομαστούν ιδιότητες - μάλλον είναι συνέπειες του ορισμού του λογαρίθμου. Εμφανίζονται συνεχώς σε προβλήματα και, παραδόξως, δημιουργούν προβλήματα ακόμη και σε «προχωρημένους» μαθητές.

  1. log a a = 1 είναι. Θυμηθείτε μια για πάντα: ο λογάριθμος σε οποιαδήποτε βάση α αυτής της ίδιας της βάσης είναι ίσος με ένα.
  2. log a 1 = 0 είναι. Η βάση a μπορεί να είναι οτιδήποτε, αλλά αν το όρισμα περιέχει ένα, ο λογάριθμος είναι ίσος με μηδέν! Επειδή το 0 = 1 είναι άμεση συνέπεια του ορισμού.

Αυτά είναι όλα τα ακίνητα. Φροντίστε να εξασκηθείτε στην εφαρμογή τους! Κατεβάστε το cheat sheet στην αρχή του μαθήματος, εκτυπώστε το και λύστε τα προβλήματα.

Σήμερα θα μιλήσουμε για λογαριθμικούς τύπουςκαι θα δώσουμε ενδεικτικά παραδείγματα λύσεων.

Οι ίδιοι υπονοούν μοτίβα λύσεων σύμφωνα με τις βασικές ιδιότητες των λογαρίθμων. Προτού εφαρμόσουμε λογαριθμικούς τύπους για επίλυση, ας σας υπενθυμίσουμε όλες τις ιδιότητες:

Τώρα, με βάση αυτούς τους τύπους (ιδιότητες), θα δείξουμε παραδείγματα επίλυσης λογαρίθμων.

Παραδείγματα επίλυσης λογαρίθμων με βάση τύπους.

Λογάριθμοςένας θετικός αριθμός b στη βάση a (που συμβολίζεται με log a b) είναι ένας εκθέτης στον οποίο πρέπει να αυξηθεί το a για να ληφθεί b, με b > 0, a > 0 και 1.

Σύμφωνα με τον ορισμό, log a b = x, που είναι ισοδύναμο με a x = b, επομένως log a a x = x.

Λογάριθμοι, παραδείγματα:

log 2 8 = 3, επειδή 2 3 = 8

log 7 49 = 2, επειδή 7 2 = 49

log 5 1/5 = -1, επειδή 5 -1 = 1/5

Δεκαδικός λογάριθμος- αυτός είναι ένας συνηθισμένος λογάριθμος, η βάση του οποίου είναι 10. Συμβολίζεται ως lg.

log 10 100 = 2, επειδή 10 2 = 100

Φυσικός λογάριθμος- επίσης συνηθισμένος λογάριθμος, λογάριθμος, αλλά με βάση e (e = 2,71828... - άρρητος αριθμός). Συμβολίζεται ως ln.

Συνιστάται να απομνημονεύουμε τους τύπους ή τις ιδιότητες των λογαρίθμων, γιατί θα τους χρειαστούμε αργότερα κατά την επίλυση λογαρίθμων, λογαριθμικών εξισώσεων και ανισώσεων. Ας δουλέψουμε ξανά κάθε τύπο με παραδείγματα.

  • Βασική λογαριθμική ταυτότητα
    α ημερολόγιο α β = β

    8 2log 8 3 = (8 2log 8 3) 2 = 3 2 = 9

  • Ο λογάριθμος του γινομένου είναι ίσος με το άθροισμα των λογαρίθμων
    log a (bc) = log a b + log a c

    log 3 8,1 + log 3 10 = log 3 (8,1*10) = log 3 81 = 4

  • Ο λογάριθμος του πηλίκου είναι ίσος με τη διαφορά των λογαρίθμων
    log a (b/c) = log a b - log a c

    9 log 5 50 /9 log 5 2 = 9 log 5 50- log 5 2 = 9 log 5 25 = 9 2 = 81

  • Ιδιότητες της ισχύος ενός λογαριθμικού αριθμού και της βάσης του λογαρίθμου

    Εκθέτης του λογαριθμικού αριθμού log a b m = mlog a b

    Εκθέτης της βάσης του λογαρίθμου log a n b =1/n*log a b

    log a n b m = m/n*log a b,

    αν m = n, παίρνουμε log a n b n = log a b

    log 4 9 = log 2 2 3 2 = log 2 3

  • Μετάβαση σε νέα βάση
    log a b = log c b/log c a,

    αν c = b, παίρνουμε το log b b = 1

    τότε log a b = 1/log b a

    log 0,8 3*log 3 1,25 = log 0,8 3*log 0,8 1,25/log 0,8 3 = log 0,8 1,25 = log 4/5 5/4 = -1

Όπως μπορείτε να δείτε, οι τύποι για τους λογάριθμους δεν είναι τόσο περίπλοκοι όσο φαίνονται. Τώρα, έχοντας εξετάσει παραδείγματα επίλυσης λογαρίθμων, μπορούμε να προχωρήσουμε στις λογαριθμικές εξισώσεις. Θα δούμε παραδείγματα επίλυσης λογαριθμικών εξισώσεων με περισσότερες λεπτομέρειες στο άρθρο: "". Μην το χάσετε!

Εάν εξακολουθείτε να έχετε ερωτήσεις σχετικά με τη λύση, γράψτε τις στα σχόλια του άρθρου.

Σημείωση: αποφασίσαμε να λάβουμε μια διαφορετική τάξη εκπαίδευσης και να σπουδάσουμε στο εξωτερικό ως επιλογή.