¿Cuántas caras laterales tiene una pirámide triangular? Pirámide. Fórmulas y propiedades de la pirámide.

Aquí puede encontrar información básica sobre pirámides y fórmulas y conceptos relacionados. Todos ellos se estudian con un tutor de matemáticas en preparación para el Examen Estatal Unificado.

Consideremos un plano, un polígono. , que se encuentra en él y un punto S, que no se encuentra en él. Conectemos S a todos los vértices del polígono. El poliedro resultante se llama pirámide. Los segmentos se llaman costillas laterales. El polígono se llama base y el punto S es la cima de la pirámide. Dependiendo del número n, la pirámide se llama triangular (n=3), cuadrangular (n=4), pentagonal (n=5), etc. Un nombre alternativo para una pirámide triangular es tetraedro. La altura de una pirámide es la perpendicular que desciende desde su cima al plano de la base.

Una pirámide se llama regular si un polígono regular, y la base de la altitud de la pirámide (la base de la perpendicular) es su centro.

comentario del tutor:
No confunda los conceptos de “pirámide regular” y “tetraedro regular”. Ud. pirámide regular las aristas laterales no son necesariamente iguales a las aristas de la base, pero en un tetraedro regular las 6 aristas son iguales. Esta es su definición. Es fácil demostrar que la igualdad implica la coincidencia del centro P del polígono. con una base de altura, por lo que un tetraedro regular es una pirámide regular.

¿Qué es una apotema?
La apotema de una pirámide es la altura de su cara lateral. Si la pirámide es regular, entonces todas sus apotemas son iguales. Lo contrario no es cierto.

Un tutor de matemáticas sobre su terminología: el 80% del trabajo con pirámides se construye a través de dos tipos de triángulos:
1) Que contiene apotema SK y altura SP
2) Que contiene el borde lateral SA y su proyección PA

Para simplificar las referencias a estos triángulos, es más conveniente que un tutor de matemáticas llame al primero de ellos apotémico, y el segundo costal. Desafortunadamente, no encontrará esta terminología en ninguno de los libros de texto y el profesor tiene que introducirla unilateralmente.

Fórmula para el volumen de una pirámide.:
1) , donde es el área de la base de la pirámide y es la altura de la pirámide
2), donde es el radio de la esfera inscrita y es el área superficie completa pirámides.
3) , donde MN es la distancia entre dos aristas que se cruzan cualesquiera y es el área del paralelogramo formado por los puntos medios de las cuatro aristas restantes.

Propiedad de la base de la altura de una pirámide:

El punto P (ver figura) coincide con el centro del círculo inscrito en la base de la pirámide si se cumple una de las siguientes condiciones:
1) Todas las apotemas son iguales
2) Todas las caras laterales están igualmente inclinadas con respecto a la base.
3) Todas las apotemas están igualmente inclinadas con respecto a la altura de la pirámide.
4) La altura de la pirámide está igualmente inclinada en todas las caras laterales.

Comentario del tutor de matemáticas.: Tenga en cuenta que todos los puntos están unidos por una propiedad común: de una forma u otra, las caras laterales están involucradas en todas partes (las apotemas son sus elementos). Por tanto, el tutor puede ofrecer una formulación menos precisa, pero más conveniente para el aprendizaje: el punto P coincide con el centro del círculo inscrito, la base de la pirámide, si existe información igual sobre sus caras laterales. Para demostrarlo basta demostrar que todos los triángulos de apotema son iguales.

El punto P coincide con el centro de un círculo circunscrito cerca de la base de la pirámide si se cumple una de tres condiciones:
1) Todos los bordes laterales son iguales
2) Todas las nervaduras laterales están igualmente inclinadas con respecto a la base.
3) Todas las nervaduras laterales están igualmente inclinadas respecto a la altura.

  • apotema- la altura de la cara lateral de una pirámide regular, que se dibuja desde su vértice (además, la apotema es la longitud de la perpendicular, que desciende desde el centro del polígono regular hasta uno de sus lados);
  • caras laterales (ASB, BSC, CSD, DSA) - triángulos que se encuentran en el vértice;
  • costillas laterales ( COMO , BS , C.S. , D.S. ) — lados comunes de las caras laterales;
  • cima de la pirámide (t.S) - un punto que conecta las nervaduras laterales y que no se encuentra en el plano de la base;
  • altura ( ENTONCES ) - un segmento perpendicular dibujado a través de la cima de la pirámide hasta el plano de su base (los extremos de dicho segmento serán la cima de la pirámide y la base de la perpendicular);
  • sección diagonal de la pirámide- una sección de la pirámide que pasa por la cima y la diagonal de la base;
  • base (ABCD) - un polígono que no pertenece al vértice de la pirámide.

Propiedades de la pirámide.

1. Cuando todos los bordes laterales sean del mismo tamaño, entonces:

  • es fácil describir un círculo cerca de la base de la pirámide, y la cima de la pirámide se proyectará hacia el centro de este círculo;
  • las nervaduras laterales forman ángulos iguales con el plano de la base;
  • Además, lo contrario también es cierto, es decir. cuando las costillas laterales se forman con el plano de la base ángulos iguales, o cuando se puede describir un círculo cerca de la base de la pirámide y la cima de la pirámide se proyectará hacia el centro de este círculo, lo que significa que todos los bordes laterales de la pirámide son del mismo tamaño.

2. Cuando las caras laterales tienen un ángulo de inclinación con respecto al plano de la base del mismo valor, entonces:

  • es fácil describir un círculo cerca de la base de la pirámide, y la cima de la pirámide se proyectará hacia el centro de este círculo;
  • las alturas de las caras laterales son de igual longitud;
  • el área de la superficie lateral es igual a ½ producto del perímetro de la base por la altura de la cara lateral.

3. Se puede describir una esfera alrededor de una pirámide si en la base de la pirámide hay un polígono alrededor del cual se puede describir un círculo (condición necesaria y suficiente). El centro de la esfera será el punto de intersección de los planos que pasan por el centro de las aristas de la pirámide perpendiculares a ellas. De este teorema concluimos que una esfera se puede describir tanto alrededor de cualquier pirámide triangular como alrededor de cualquier pirámide regular.

4. Una esfera se puede inscribir en una pirámide si los planos bisectores de los ángulos diédricos internos de la pirámide se cruzan en el primer punto (condición necesaria y suficiente). Este punto se convertirá en el centro de la esfera.

La pirámide más simple.

Según el número de ángulos, la base de la pirámide se divide en triangular, cuadrangular, etc.

Habrá una pirámide triangular, cuadrangular, y así sucesivamente, cuando la base de la pirámide es un triángulo, un cuadrilátero, etcétera. Una pirámide triangular es un tetraedro, un tetraedro. Cuadrangular - pentagonal y así sucesivamente.

Concepto de pirámide

Definición 1

Figura geométrica, formado por un polígono y un punto que no se encuentra en el plano que contiene este polígono, conectado a todos los vértices del polígono se llama pirámide (Fig. 1).

El polígono a partir del cual está hecha la pirámide se llama base de la pirámide; los triángulos resultantes, cuando se conectan a un punto, son las caras laterales de la pirámide, los lados de los triángulos son los lados de la pirámide y el punto común. a todos los triángulos está la cima de la pirámide.

Tipos de pirámides

Dependiendo del número de ángulos en la base de la pirámide, se puede llamar triangular, cuadrangular, etc. (Fig. 2).

Figura 2.

Otro tipo de pirámide es la pirámide regular.

Introduzcamos y demostremos la propiedad de una pirámide regular.

Teorema 1

Todas las caras laterales de una pirámide regular son triángulos isósceles iguales entre sí.

Prueba.

Considere una pirámide regular $n-$gonal con vértice $S$ de altura $h=SO$. Dibujemos un círculo alrededor de la base (Fig. 4).

Figura 4.

Considere el triángulo $SOA$. Según el teorema de Pitágoras, obtenemos

Evidentemente, cualquier borde lateral quedará definido de esta forma. En consecuencia, todas las aristas laterales son iguales entre sí, es decir, todas las caras laterales son triángulos isósceles. Demostremos que son iguales entre sí. Como la base es un polígono regular, las bases de todas las caras laterales son iguales entre sí. En consecuencia, todas las caras laterales son iguales según el III criterio de igualdad de triángulos.

El teorema está demostrado.

Introduzcamos ahora la siguiente definición relacionada con el concepto de pirámide regular.

Definición 3

La apotema de una pirámide regular es la altura de su cara lateral.

Obviamente, según el teorema uno, todas las apotemas son iguales entre sí.

Teorema 2

El área de la superficie lateral de una pirámide regular se determina como el producto del semiperímetro de la base por la apotema.

Prueba.

Denotemos el lado de la base de la pirámide $n-$gonal por $a$ y la apotema por $d$. Por tanto, el área de la cara lateral es igual a

Dado que, según el teorema 1, todo lados son iguales, entonces

El teorema está demostrado.

Otro tipo de pirámide es la pirámide truncada.

Definición 4

Si se dibuja un plano paralelo a su base a través de una pirámide ordinaria, entonces la figura formada entre este plano y el plano de la base se llama pirámide truncada (Fig. 5).

Figura 5. Pirámide truncada

Las caras laterales de la pirámide truncada son trapecios.

Teorema 3

El área de la superficie lateral de una pirámide truncada regular se determina como el producto de la suma de los semiperímetros de las bases y la apotema.

Prueba.

Denotemos los lados de las bases de la pirámide $n-$gonal con $a\ y\ b$, respectivamente, y la apotema con $d$. Por tanto, el área de la cara lateral es igual a

Como todos los lados son iguales, entonces

El teorema está demostrado.

Tarea de muestra

Ejemplo 1

Encuentre el área de la superficie lateral de una pirámide triangular truncada si se obtiene de una pirámide regular con base de lado 4 y apotema 5 cortando un plano que pasa por la línea media de las caras laterales.

Solución.

Por el teorema sobre línea media encontramos que la base superior de la pirámide truncada es igual a $4\cdot \frac(1)(2)=2$, y la apotema es igual a $5\cdot \frac(1)(2)=2.5$.

Luego, por el teorema 3, obtenemos

Definición

Pirámide es un poliedro compuesto por un polígono \(A_1A_2...A_n\) y \(n\) triángulos con un vértice común \(P\) (que no se encuentra en el plano del polígono) y lados opuestos a él, coincidiendo con el lados del polígono.
Designación: \(PA_1A_2...A_n\) .
Ejemplo: pirámide pentagonal \(PA_1A_2A_3A_4A_5\) .

Triángulos \(PA_1A_2, \PA_2A_3\), etc. son llamados caras laterales pirámides, segmentos \(PA_1, PA_2\), etc. – costillas laterales, polígono \(A_1A_2A_3A_4A_5\) – base, punto \(P\) – arriba.

Altura Las pirámides son una perpendicular que desciende desde la cima de la pirámide hasta el plano de la base.

Una pirámide que tiene un triángulo en su base se llama tetraedro.

La pirámide se llama correcto, si su base es un polígono regular y se cumple una de las siguientes condiciones:

\((a)\) los bordes laterales de la pirámide son iguales;

\((b)\) la altura de la pirámide pasa por el centro del círculo circunscrito cerca de la base;

\((c)\) las nervaduras laterales están inclinadas con respecto al plano de la base en el mismo ángulo.

\((d)\) las caras laterales están inclinadas con respecto al plano de la base en el mismo ángulo.

tetraedro regular- Este pirámide triangular, cuyas caras son triángulos equiláteros iguales.

Teorema

Las condiciones \((a), (b), (c), (d)\) son equivalentes.

Prueba

Encontremos la altura de la pirámide \(PH\) . Sea \(\alpha\) el plano de la base de la pirámide.


1) Demostremos que de \((a)\) se sigue \((b)\) . Sea \(PA_1=PA_2=PA_3=...=PA_n\) .

Porque \(PH\perp \alpha\), entonces \(PH\) es perpendicular a cualquier línea que se encuentre en este plano, lo que significa que los triángulos son rectángulos. Esto significa que estos triángulos son iguales en el cateto común \(PH\) y la hipotenusa \(PA_1=PA_2=PA_3=...=PA_n\) . Esto significa \(A_1H=A_2H=...=A_nH\) . Esto significa que los puntos \(A_1, A_2, ..., A_n\) están a la misma distancia del punto \(H\), por lo tanto, se encuentran en el mismo círculo con el radio \(A_1H\). Este círculo, por definición, está circunscrito al polígono \(A_1A_2...A_n\) .

2) Demostremos que \((b)\) implica \((c)\) .

\(PA_1H, PA_2H, PA_3H,..., PA_nH\) rectangulares e iguales sobre dos patas. Esto significa que sus ángulos también son iguales, por lo tanto, \(\ángulo PA_1H=\ángulo PA_2H=...=\ángulo PA_nH\).

3) Demostremos que \((c)\) implica \((a)\) .

Similar al primer punto, los triángulos \(PA_1H, PA_2H, PA_3H,..., PA_nH\) rectangular y a lo largo de la pierna y esquina afilada. Esto significa que sus hipotenusas también son iguales, es decir, \(PA_1=PA_2=PA_3=...=PA_n\) .

4) Demostremos que de \((b)\) se sigue \((d)\) .

Porque en un polígono regular coinciden los centros de los círculos circunscritos e inscritos (en general, este punto se llama centro de un polígono regular), entonces \(H\) es el centro del círculo inscrito. Dibujemos perpendiculares desde el punto \(H\) a los lados de la base: \(HK_1, HK_2\), etc. Estos son los radios del círculo inscrito (por definición). Entonces, según el TTP (\(PH\) es una perpendicular al plano, \(HK_1, HK_2\), etc. son proyecciones, perpendicular a los lados) oblicuo \(PK_1, PK_2\), etc. perpendicular a los lados \(A_1A_2, A_2A_3\), etc. respectivamente. Entonces, por definición \(\ángulo PK_1H, \ángulo PK_2H\) iguales a los ángulos entre las caras laterales y la base. Porque triángulos \(PK_1H, PK_2H, ...\) son iguales (como rectangulares en dos lados), entonces los ángulos \(\ángulo PK_1H, \ángulo PK_2H, ...\) son iguales.

5) Demostremos que \((d)\) implica \((b)\) .

Similar al cuarto punto, los triángulos \(PK_1H, PK_2H, ...\) son iguales (como rectangulares a lo largo del cateto y ángulo agudo), lo que significa que los segmentos \(HK_1=HK_2=...=HK_n\) son igual. Esto significa, por definición, \(H\) es el centro de un círculo inscrito en la base. Pero porque Para polígonos regulares, los centros de los círculos inscritos y circunscritos coinciden, entonces \(H\) es el centro del círculo circunscrito. Chtd.

Consecuencia

Las caras laterales de una pirámide regular son triángulos isósceles iguales.

Definición

La altura de la cara lateral de una pirámide regular trazada desde su vértice se llama apotema.
Las apotemas de todas las caras laterales de una pirámide regular son iguales entre sí y también son medianas y bisectrices.

Notas importantes

1. La altura de una pirámide triangular regular cae en el punto de intersección de las alturas (o bisectrices o medianas) de la base (la base es un triángulo regular).

2. La altura es correcta pirámide cuadrangular cae en el punto de intersección de las diagonales de la base (la base es un cuadrado).

3. La altura de una pirámide hexagonal regular cae en el punto de intersección de las diagonales de la base (la base es un hexágono regular).

4. La altura de la pirámide es perpendicular a cualquier línea recta que se encuentre en la base.

Definición

La pirámide se llama rectangular, si uno de sus bordes laterales es perpendicular al plano de la base.


Notas importantes

1. En una pirámide rectangular, el borde perpendicular a la base es la altura de la pirámide. Es decir, \(SR\) es la altura.

2. Porque \(SR\) es perpendicular a cualquier línea desde la base, entonces \(\triángulo SRM, \triángulo SRP\)– triángulos rectángulos.

3. Triángulos \(\triángulo SRN, \triángulo SRK\)- también rectangular.
Es decir, cualquier triángulo formado por esta arista y la diagonal que sale del vértice de esta arista situada en la base será rectangular.

\[(\Large(\text(Volumen y superficie de la pirámide)))\]

Teorema

El volumen de la pirámide es igual a un tercio del producto del área de la base por la altura de la pirámide: \

Consecuencias

Sea \(a\) el lado de la base, \(h\) la altura de la pirámide.

1. El volumen de una pirámide triangular regular es \(V_(\text(triángulo rectángulo.pir.))=\dfrac(\sqrt3)(12)a^2h\),

2. El volumen de una pirámide cuadrangular regular es \(V_(\text(right.four.pir.))=\dfrac13a^2h\).

3. El volumen de una pirámide hexagonal regular es \(V_(\text(right.six.pir.))=\dfrac(\sqrt3)(2)a^2h\).

4. El volumen de un tetraedro regular es \(V_(\text(tetr. derecha))=\dfrac(\sqrt3)(12)a^3\).

Teorema

El área de la superficie lateral de una pirámide regular es igual a la mitad del producto del perímetro de la base por la apotema.

\[(\Grande(\text(Frustum)))\]

Definición

Considere una pirámide arbitraria \(PA_1A_2A_3...A_n\) . Dibujemos un plano paralelo a la base de la pirámide que pase por un cierto punto que se encuentra en el borde lateral de la pirámide. Este plano dividirá la pirámide en dos poliedros, uno de los cuales es una pirámide (\(PB_1B_2...B_n\)), y el otro se llama pirámide truncada(\(A_1A_2...A_nB_1B_2...B_n\)).


La pirámide truncada tiene dos bases: los polígonos \(A_1A_2...A_n\) y \(B_1B_2...B_n\) que son similares entre sí.

La altura de una pirámide truncada es una perpendicular trazada desde algún punto de la base superior al plano de la base inferior.

Notas importantes

1. Todas las caras laterales de una pirámide truncada son trapecios.

2. El segmento que conecta los centros de las bases de una pirámide truncada regular (es decir, una pirámide obtenida por sección transversal de una pirámide regular) es la altura.

Pirámide. Pirámide truncada

Pirámide es un poliedro, una de cuyas caras es un polígono ( base ), y todas las demás caras son triángulos con un vértice común ( caras laterales ) (Figura 15). La pirámide se llama correcto , si su base es un polígono regular y la cima de la pirámide se proyecta hacia el centro de la base (Fig. 16). Una pirámide triangular con todas las aristas iguales se llama tetraedro .



costilla lateral de una pirámide es el lado de la cara lateral que no pertenece a la base Altura pirámide es la distancia desde su cima hasta el plano de la base. Todas las aristas laterales de una pirámide regular son iguales entre sí, todas las caras laterales son triángulos isósceles iguales. La altura de la cara lateral de una pirámide regular trazada desde el vértice se llama apotema . sección diagonal Se llama sección de una pirámide a un plano que pasa por dos aristas laterales que no pertenecen a la misma cara.

Superficie lateral La pirámide es la suma de las áreas de todas las caras laterales. Superficie total se llama suma de las áreas de todas las caras laterales y la base.

Teoremas

1. Si en una pirámide todos los bordes laterales están igualmente inclinados con respecto al plano de la base, entonces la cima de la pirámide se proyecta hacia el centro del círculo circunscrito cerca de la base.

2. Si en una pirámide todas las aristas laterales tienen longitudes iguales, luego la cima de la pirámide se proyecta hacia el centro del círculo circunscrito cerca de la base.

3. Si todas las caras de una pirámide están igualmente inclinadas con respecto al plano de la base, entonces la cima de la pirámide se proyecta en el centro del círculo inscrito en la base.

Para calcular el volumen de una pirámide arbitraria, la fórmula correcta es:

Dónde V- volumen;

base S– superficie de base;

h– altura de la pirámide.

Para una pirámide regular, las siguientes fórmulas son correctas:

Dónde pag– perímetro de la base;

Ja– apotema;

h- altura;

S lleno

lado S

base S– superficie de base;

V– volumen de una pirámide regular.

Pirámide truncada Se llama la parte de la pirámide encerrada entre la base y un plano de corte paralelo a la base de la pirámide (Fig. 17). Pirámide truncada regular es la parte de una pirámide regular encerrada entre la base y un plano cortante paralelo a la base de la pirámide.

Razones pirámide truncada - polígonos similares. Caras laterales – trapecios. Altura de una pirámide truncada es la distancia entre sus bases. Diagonal una pirámide truncada es un segmento que conecta sus vértices que no se encuentran en la misma cara. sección diagonal Es una sección de una pirámide truncada por un plano que pasa por dos aristas laterales que no pertenecen a la misma cara.


Para una pirámide truncada son válidas las siguientes fórmulas:

(4)

Dónde S 1 , S 2 – áreas de las bases superior e inferior;

S lleno– superficie total;

lado S– superficie lateral;

h- altura;

V– volumen de una pirámide truncada.

Para una pirámide truncada regular la fórmula es correcta:

Dónde pag 1 , pag 2 – perímetros de las bases;

Ja– apotema de una pirámide truncada regular.

Ejemplo 1. En una pirámide triangular regular, el ángulo diédrico en la base es de 60º. Encuentra la tangente del ángulo de inclinación. costilla lateral al plano base.

Solución. Hagamos un dibujo (Fig. 18).


La pirámide es correcta, significa en la base. triangulo equilatero y todas las caras laterales son triángulos isósceles iguales. El ángulo diédrico en la base es el ángulo de inclinación de la cara lateral de la pirámide con respecto al plano de la base. El ángulo lineal es el ángulo. a entre dos perpendiculares: etc. La cima de la pirámide se proyecta en el centro del triángulo (el centro de la circunferencia circunscrita y del círculo inscrito del triángulo). abecedario). El ángulo de inclinación del borde lateral (por ejemplo SB) es el ángulo entre el propio borde y su proyección sobre el plano de la base. para la costilla SB este ángulo será el ángulo SBD. Para encontrar la tangente necesitas conocer los catetos. ENTONCES Y TRANSMISIÓN EXTERIOR.. Sea la longitud del segmento BD es igual a 3 A. Punto ACERCA DE segmento BD se divide en partes: y de encontramos ENTONCES: De encontramos:

Respuesta:

Ejemplo 2. Calcula el volumen de una pirámide cuadrangular truncada regular si las diagonales de sus bases son iguales a cm y cm, y su altura es de 4 cm.

Solución. Para encontrar el volumen de una pirámide truncada usamos la fórmula (4). Para encontrar el área de las bases, debes encontrar los lados de los cuadrados de las bases, conociendo sus diagonales. Los lados de las bases son iguales a 2 cm y 8 cm, respectivamente. Esto significa que las áreas de las bases y Sustituyendo todos los datos en la fórmula, calculamos el volumen de la pirámide truncada:

Respuesta: 112cm3.

Ejemplo 3. Encuentre el área de la cara lateral de una pirámide truncada triangular regular, cuyos lados de las bases miden 10 cm y 4 cm, y la altura de la pirámide es de 2 cm.

Solución. Hagamos un dibujo (Fig. 19).


La cara lateral de esta pirámide es un trapezoide isósceles. Para calcular el área de un trapecio, necesitas saber la base y la altura. Las bases se dan según el estado, sólo se desconoce la altura. La encontraremos de donde A 1 mi perpendicular a un punto A 1 en el plano de la base inferior, A 1 D– perpendicular desde A 1 por C.A.. A 1 mi= 2 cm, ya que esta es la altura de la pirámide. para encontrar Delaware Hagamos un dibujo adicional que muestre la vista superior (Fig. 20). Punto ACERCA DE– proyección de los centros de las bases superior e inferior. desde (ver Fig. 20) y Por otro lado DE ACUERDO– radio inscrito en el círculo y om– radio inscrito en un círculo:

MK = DE.

Según el teorema de Pitágoras de

Área de la cara lateral:


Respuesta:

Ejemplo 4. En la base de la pirámide se encuentra un trapezoide isósceles, cuyas bases A Y b (a> b). Cada cara lateral forma un ángulo igual al plano de la base de la pirámide. j. Encuentra el área de superficie total de la pirámide.

Solución. Hagamos un dibujo (Fig. 21). Superficie total de la pirámide SABCD igual a la suma de las áreas y el área del trapezoide ABCD.

Usemos la afirmación de que si todas las caras de la pirámide están igualmente inclinadas con respecto al plano de la base, entonces el vértice se proyecta hacia el centro del círculo inscrito en la base. Punto ACERCA DE– proyección de vértice S en la base de la pirámide. Triángulo CÉSPED es la proyección ortogonal del triángulo CDS al plano de la base. Por el teorema del área de proyección ortogonal figura plana obtenemos:


De la misma manera significa Así, el problema se redujo a encontrar el área del trapezoide. ABCD. Dibujemos un trapecio ABCD por separado (Fig. 22). Punto ACERCA DE– el centro de un círculo inscrito en un trapezoide.


Dado que un círculo puede inscribirse en un trapezoide, entonces o Del teorema de Pitágoras tenemos