Quel est le sinus d'un angle aigu. Sinus, cosinus, tangente et cotangente : définitions en trigonométrie, exemples, formules

La trigonométrie, en tant que science, est originaire de l'Orient ancien. Les premiers rapports trigonométriques ont été dérivés par des astronomes pour créer un calendrier et une orientation précis par les étoiles. Ces calculs concernaient la trigonométrie sphérique, alors qu'en cours scolaireétudier les rapports des côtés et des angles d’un triangle plan.

La trigonométrie est une branche des mathématiques qui traite des propriétés de fonctions trigonométriques et la relation entre les côtés et les angles des triangles.

À l'apogée de la culture et de la science, au 1er millénaire après JC, la connaissance s'est répandue de l'Orient ancien jusqu'en Grèce. Mais les principales découvertes de la trigonométrie sont le mérite des hommes du Califat arabe. En particulier, le scientifique turkmène al-Marazwi a introduit des fonctions telles que la tangente et la cotangente et a compilé les premiers tableaux de valeurs pour les sinus, les tangentes et les cotangentes. Les concepts de sinus et de cosinus ont été introduits par des scientifiques indiens. La trigonométrie a reçu beaucoup d'attention dans les œuvres de grandes figures de l'Antiquité comme Euclide, Archimède et Ératosthène.

Grandeurs de base de la trigonométrie

Les fonctions trigonométriques de base d'un argument numérique sont le sinus, le cosinus, la tangente et la cotangente. Chacun d'eux a son propre graphe : sinus, cosinus, tangente et cotangente.

Les formules de calcul des valeurs de ces grandeurs sont basées sur le théorème de Pythagore. Elle est mieux connue des écoliers dans la formulation : « Les pantalons pythagoriciens sont égaux dans toutes les directions », puisque la preuve est donnée à l'aide de l'exemple d'un triangle rectangle isocèle.

Les relations sinus, cosinus et autres établissent la relation entre les angles aigus et les côtés de tout triangle rectangle. Présentons les formules de calcul de ces quantités pour l'angle A et traçons les relations entre les fonctions trigonométriques :

Comme vous pouvez le voir, tg et ctg sont fonctions inverses. Si nous imaginons la jambe a comme le produit du sin A et de l'hypoténuse c, et la jambe b comme cos A * c, nous obtenons les formules suivantes pour la tangente et la cotangente :

Cercle trigonométrique

Graphiquement, la relation entre les quantités mentionnées peut être représentée comme suit :

Circonférence, en dans ce cas, représente toutes les valeurs possibles de l'angle α - de 0° à 360°. Comme le montre la figure, chaque fonction prend une valeur négative ou positive selon l'angle. Par exemple, sin α aura le signe « + » si α appartient aux 1er et 2ème quarts du cercle, c'est-à-dire qu'il est compris entre 0° et 180°. Pour α de 180° à 360° (quarts III et IV), sin α ne peut être qu'une valeur négative.

Essayons de construire tables trigonométriques pour des angles spécifiques et découvrez la valeur des quantités.

Les valeurs de α égales à 30°, 45°, 60°, 90°, 180° etc. sont appelées cas particuliers. Les valeurs des fonctions trigonométriques correspondantes sont calculées et présentées sous forme de tableaux spéciaux.

Ces angles n'ont pas été choisis au hasard. La désignation π dans les tableaux correspond aux radians. Rad est l'angle auquel la longueur d'un arc de cercle correspond à son rayon. Cette valeur a été introduite afin d'établir une dépendance universelle ; lors du calcul en radians, la longueur réelle du rayon en cm n'a pas d'importance.

Les angles dans les tableaux des fonctions trigonométriques correspondent aux valeurs en radians :

Il n’est donc pas difficile de deviner que 2π est un cercle complet ou 360°.

Propriétés des fonctions trigonométriques : sinus et cosinus

Afin de considérer et de comparer les propriétés fondamentales du sinus et du cosinus, de la tangente et de la cotangente, il est nécessaire de dessiner leurs fonctions. Cela peut être réalisé sous la forme d'une courbe située dans un système de coordonnées bidimensionnel.

Considérer tableau de comparaison propriétés du sinus et du cosinus :

Onde sinusoïdaleCosinus
y = péché xy = cos x
ODZ[-1 ; 1]ODZ[-1 ; 1]
sin x = 0, pour x = πk, où k ϵ Zcos x = 0, pour x = π/2 + πk, où k ϵ Z
sin x = 1, pour x = π/2 + 2πk, où k ϵ Zcos x = 1, à x = 2πk, où k ϵ Z
sin x = - 1, à x = 3π/2 + 2πk, où k ϵ Zcos x = - 1, pour x = π + 2πk, où k ϵ Z
sin (-x) = - sin x, c'est-à-dire que la fonction est impairecos (-x) = cos x, c'est-à-dire que la fonction est paire
la fonction est périodique, la plus petite période est 2π
sin x › 0, avec x appartenant au 1er et au 2ème quartiers ou de 0° à 180° (2πk, π + 2πk)cos x › 0, avec x appartenant aux quartiers I et IV ou de 270° à 90° (- π/2 + 2πk, π/2 + 2πk)
sin x ‹ 0, avec x appartenant aux troisième et quatrième quartiers ou de 180° à 360° (π + 2πk, 2π + 2πk)cos x ‹ 0, avec x appartenant aux 2ème et 3ème quartiers ou de 90° à 270° (π/2 + 2πk, 3π/2 + 2πk)
augmente dans l'intervalle [- π/2 + 2πk, π/2 + 2πk]augmente sur l'intervalle [-π + 2πk, 2πk]
diminue sur les intervalles [π/2 + 2πk, 3π/2 + 2πk]diminue à intervalles réguliers
dérivée (sin x)’ = cos xdérivée (cos x)’ = - sin x

Déterminer si une fonction est paire ou non est très simple. Assez pour imaginer cercle trigonométrique avec les signes des grandeurs trigonométriques et « pliez » mentalement le graphique par rapport à l'axe OX. Si les signes coïncident, la fonction est paire, sinon elle est impaire.

L’introduction des radians et l’énumération des propriétés fondamentales des ondes sinusoïdales et cosinusoïdales nous permettent de présenter le schéma suivant :

Il est très simple de vérifier que la formule est correcte. Par exemple, pour x = π/2, le sinus est 1, tout comme le cosinus de x = 0. La vérification peut être effectuée en consultant des tableaux ou en traçant des courbes de fonctions pour des valeurs données.

Propriétés des tangentes et cotangentes

Les graphiques des fonctions tangente et cotangente diffèrent considérablement des fonctions sinus et cosinus. Les valeurs tg et ctg sont réciproques l'une de l'autre.

  1. Y = bronzage x.
  2. La tangente tend vers les valeurs de y en x = π/2 + πk, mais ne les atteint jamais.
  3. La plus petite période positive de la tangentoïde est π.
  4. Tg (- x) = - tg x, c'est-à-dire que la fonction est impaire.
  5. Tg x = 0, pour x = πk.
  6. La fonction augmente.
  7. Tg x › 0, pour x ϵ (πk, π/2 + πk).
  8. Tg x ‹ 0, pour x ϵ (— π/2 + πk, πk).
  9. Dérivée (tg x)' = 1/cos 2 ⁡x.

Considérez l'image graphique du cotangentoïde ci-dessous dans le texte.

Principales propriétés des cotangentoïdes :

  1. Y = lit bébé x.
  2. Contrairement aux fonctions sinus et cosinus, dans la tangentoïde Y peut prendre les valeurs de l'ensemble de tous les nombres réels.
  3. Le cotangentoïde tend vers les valeurs de y en x = πk, mais ne les atteint jamais.
  4. La plus petite période positive d'un cotangentoïde est π.
  5. Ctg (- x) = - ctg x, c'est-à-dire que la fonction est impaire.
  6. Ctg x = 0, pour x = π/2 + πk.
  7. La fonction est décroissante.
  8. Ctg x › 0, pour x ϵ (πk, π/2 + πk).
  9. Ctg x ‹ 0, pour x ϵ (π/2 + πk, πk).
  10. Dérivée (ctg x)’ = - 1/sin 2 ⁡x Correct

Identités trigonométriques- ce sont des égalités qui établissent une connexion entre sinus, cosinus, tangente et cotangente d'un angle, ce qui permet de retrouver n'importe laquelle de ces fonctions, à condition qu'une autre soit connue.

tg \alpha = \frac(\sin \alpha)(\cos \alpha), \enspace ctg \alpha = \frac(\cos \alpha)(\sin \alpha)

tg \alpha \cdot ctg \alpha = 1

Cette identité dit que la somme du carré du sinus d'un angle et du carré du cosinus d'un angle est égale à un, ce qui permet en pratique de calculer le sinus d'un angle lorsque son cosinus est connu et vice versa. .

Lors de la conversion d'expressions trigonométriques, cette identité est très souvent utilisée, ce qui permet de remplacer la somme des carrés du cosinus et du sinus d'un angle par un et également d'effectuer l'opération de remplacement dans l'ordre inverse.

Trouver la tangente et la cotangente en utilisant le sinus et le cosinus

tg \alpha = \frac(\sin \alpha)(\cos \alpha),\enspace

Ces identités sont formées à partir des définitions du sinus, du cosinus, de la tangente et de la cotangente. Après tout, si vous le regardez, alors par définition l'ordonnée y est un sinus et l'abscisse x est un cosinus. Alors la tangente sera égale au rapport \frac(y)(x)=\frac(\sin \alpha)(\cos \alpha), et le rapport \frac(x)(y)=\frac(\cos \alpha)(\sin \alpha)- sera une cotangente.

Ajoutons que ce n'est que pour les angles \alpha pour lesquels les fonctions trigonométriques qu'ils contiennent ont un sens que les identités seront valables, ctg \alpha=\frac(\cos \alpha)(\sin \alpha).

Par exemple: tg \alpha = \frac(\sin \alpha)(\cos \alpha) est valable pour les angles \alpha différents de \frac(\pi)(2)+\piz, UN ctg \alpha=\frac(\cos \alpha)(\sin \alpha)- pour un angle \alpha autre que \pi z, z est un nombre entier.

Relation entre tangente et cotangente

tg \alpha \cdot ctg \alpha=1

Cette identité n'est valable que pour les angles \alpha différents de \frac(\pi)(2) z. Sinon, ni la cotangente ni la tangente ne seront déterminées.

Sur la base des points ci-dessus, nous obtenons que tg \alpha = \frac(y)(x), UN ctg \alpha=\frac(x)(y). Il s'ensuit que tg \alpha \cdot ctg \alpha = \frac(y)(x) \cdot \frac(x)(y)=1. Ainsi, la tangente et la cotangente du même angle auquel elles ont un sens sont des nombres mutuellement inverses.

Relations entre tangente et cosinus, cotangente et sinus

tg^(2) \alpha + 1=\frac(1)(\cos^(2) \alpha)- la somme du carré de la tangente de l'angle \alpha et 1 est égale à l'inverse du carré du cosinus de cet angle. Cette identité est valable pour tous les \alpha autres que \frac(\pi)(2)+ \pi z.

1+ctg^(2) \alpha=\frac(1)(\sin^(2)\alpha)- la somme de 1 et du carré de la cotangente de l'angle \alpha est égale à l'inverse du carré du sinus de l'angle donné. Cette identité est valable pour tout \alpha différent de \pi z.

Exemples de solutions à des problèmes utilisant des identités trigonométriques

Exemple 1

Trouver \sin \alpha et tg \alpha si \cos \alpha=-\frac12 Et \frac(\pi)(2)< \alpha < \pi ;

Afficher la solution

Solution

Les fonctions \sin \alpha et \cos \alpha sont liées par la formule \sin^(2)\alpha + \cos^(2) \alpha = 1. Substituer dans cette formule \cos \alpha = -\frac12, on a:

\sin^(2)\alpha + \left (-\frac12 \right)^2 = 1

Cette équation a 2 solutions :

\sin \alpha = \pm \sqrt(1-\frac14) = \pm \frac(\sqrt 3)(2)

Par condition \frac(\pi)(2)< \alpha < \pi . Au deuxième trimestre, le sinus est positif, donc \sin \alpha = \frac(\sqrt 3)(2).

Afin de trouver tan \alpha, on utilise la formule tg \alpha = \frac(\sin \alpha)(\cos \alpha)

tg \alpha = \frac(\sqrt 3)(2) : \frac12 = \sqrt 3

Exemple 2

Trouver \cos \alpha et ctg \alpha si et \frac(\pi)(2)< \alpha < \pi .

Afficher la solution

Solution

Substitution dans la formule \sin^(2)\alpha + \cos^(2) \alpha = 1 numéro donné \sin \alpha=\frac(\sqrt3)(2), on a \left (\frac(\sqrt3)(2)\right)^(2) + \cos^(2) \alpha = 1. Cette équation a deux solutions \cos \alpha = \pm \sqrt(1-\frac34)=\pm\sqrt\frac14.

Par condition \frac(\pi)(2)< \alpha < \pi . Au deuxième trimestre, le cosinus est négatif, donc \cos \alpha = -\sqrt\frac14=-\frac12.

Afin de trouver ctg \alpha , on utilise la formule ctg \alpha = \frac(\cos \alpha)(\sin \alpha). Nous connaissons les valeurs correspondantes.

ctg \alpha = -\frac12 : \frac(\sqrt3)(2) = -\frac(1)(\sqrt 3).

Nous commencerons notre étude de la trigonométrie par le triangle rectangle. Définissons ce que sont le sinus et le cosinus, ainsi que la tangente et la cotangente angle aigu. Ce sont les bases de la trigonométrie.

Rappelons que angle droit est un angle égal à 90 degrés. En d’autres termes, un demi-angle tourné.

Angle vif- moins de 90 degrés.

Angle obtus- supérieur à 90 degrés. Par rapport à un tel angle, « obtus » n'est pas une insulte, mais un terme mathématique :-)

Dessinons triangle rectangle. Un angle droit est généralement noté . Veuillez noter que le côté opposé au coin est indiqué par la même lettre, seulement en petite. Ainsi, le côté opposé à l'angle A est désigné .

L'angle est désigné par la lettre grecque correspondante.

Hypoténuse d'un triangle rectangle est le côté opposé à l'angle droit.

Jambes- les côtés opposés aux angles aigus.

La jambe située à l'opposé de l'angle s'appelle opposé(par rapport à l'angle). L'autre jambe, qui se trouve sur l'un des côtés de l'angle, s'appelle adjacent.

Sinus L'angle aigu dans un triangle rectangle est le rapport du côté opposé à l'hypoténuse :

Cosinus angle aigu dans un triangle rectangle - le rapport de la jambe adjacente à l'hypoténuse :

Tangente angle aigu dans un triangle rectangle - le rapport du côté opposé au côté adjacent :

Autre définition (équivalente) : la tangente d'un angle aigu est le rapport du sinus de l'angle à son cosinus :

Cotangente angle aigu dans un triangle rectangle - le rapport du côté adjacent au côté opposé (ou, ce qui revient au même, le rapport du cosinus au sinus) :

Notez les relations de base pour le sinus, le cosinus, la tangente et la cotangente ci-dessous. Ils nous seront utiles pour résoudre des problèmes.

Prouvons-en quelques-uns.

D'accord, nous avons donné des définitions et des formules écrites. Mais pourquoi avons-nous encore besoin de sinus, cosinus, tangente et cotangente ?

Nous savons que la somme des angles de n'importe quel triangle est égale à.

Nous connaissons la relation entre des soirées triangle rectangle. C'est le théorème de Pythagore : .

Il s'avère qu'en connaissant deux angles dans un triangle, vous pouvez trouver le troisième. Connaissant les deux côtés d’un triangle rectangle, vous pouvez trouver le troisième. Cela signifie que les angles ont leur propre rapport et que les côtés ont le leur. Mais que faire si dans un triangle rectangle vous connaissez un angle (sauf l'angle droit) et un côté, mais que vous devez trouver les autres côtés ?

C’est ce que les gens rencontraient autrefois lorsqu’ils dressaient des cartes de la région et du ciel étoilé. Après tout, il n’est pas toujours possible de mesurer directement tous les côtés d’un triangle.

Sinus, cosinus et tangente - on les appelle aussi fonctions d'angle trigonométrique- donner des relations entre des soirées Et coins Triangle. Connaissant l'angle, vous pouvez retrouver toutes ses fonctions trigonométriques à l'aide de tableaux spéciaux. Et connaissant les sinus, cosinus et tangentes des angles d’un triangle et d’un de ses côtés, vous pouvez trouver le reste.

Nous dresserons également un tableau des valeurs du sinus, du cosinus, de la tangente et de la cotangente pour les « bons » angles de à.

Veuillez noter les deux tirets rouges dans le tableau. Aux valeurs d'angle appropriées, la tangente et la cotangente n'existent pas.

Examinons plusieurs problèmes de trigonométrie de la banque de tâches FIPI.

1. Dans un triangle, l’angle est , . Trouver .

Le problème est résolu en quatre secondes.

Parce que le , .

2. Dans un triangle, l'angle est , , . Trouver .

Trouvons-le en utilisant le théorème de Pythagore.

Le problème est résolu.

Souvent, dans les problèmes, il y a des triangles avec des angles et ou avec des angles et. Retenez par cœur les ratios de base pour eux !

Pour un triangle avec des angles et la branche opposée à l'angle en est égale à la moitié de l'hypoténuse.

Un triangle avec des angles et est isocèle. Dans celui-ci, l'hypoténuse est plusieurs fois plus grande que la jambe.

Nous avons examiné des problèmes pour résoudre des triangles rectangles, c'est-à-dire trouver des côtés ou des angles inconnus. Mais ce n'est pas tout! DANS Options d'examen d'État unifié en mathématiques, il existe de nombreux problèmes impliquant le sinus, le cosinus, la tangente ou la cotangente de l'angle externe d'un triangle. Plus d’informations à ce sujet dans le prochain article.

Tout d’abord, considérons un cercle de rayon 1 et de centre à (0;0). Pour tout αЄR, le rayon 0A peut être tracé de telle sorte que la mesure en radians de l'angle entre 0A et l'axe 0x soit égale à α. Le sens antihoraire est considéré comme positif. Laissez l'extrémité du rayon A avoir les coordonnées (a,b).

Définition du sinus

Définition : Le nombre b, égal à l'ordonnée du rayon unité construit de la manière décrite, est noté sinα et est appelé sinus de l'angle α.

Exemple : sin 3π cos3π/2 = 0 0 = 0

Définition du cosinus

Définition : Le nombre a, égal à l'abscisse de l'extrémité du rayon unité construit de la manière décrite, est noté cosα et est appelé cosinus de l'angle α.

Exemple : cos0 cos3π + cos3,5π = 1 (-1) + 0 = 2

Ces exemples utilisent la définition du sinus et du cosinus d'un angle en termes de coordonnées de l'extrémité du rayon unité et du cercle unité. Pour une représentation plus visuelle, vous devez dessiner cercle unitaire et tracez dessus les points correspondants, puis comptez leurs abscisses pour calculer le cosinus et l'ordonnée pour calculer le sinus.

Définition de la tangente

Définition : La fonction tgx=sinx/cosx pour x≠π/2+πk, kЄZ, est appelée la cotangente de l'angle x. Le domaine de définition de la fonction tgx est constitué de tous les nombres réels, sauf x=π/2+πn, nЄZ.

Exemple : tg0 tgπ = 0 0 = 0

Cet exemple est similaire au précédent. Pour calculer la tangente d'un angle, il faut diviser l'ordonnée d'un point par son abscisse.

Définition de cotangente

Définition : La fonction ctgx=cosx/sinx pour x≠πk, kЄZ est appelée cotangente de l'angle x. Le domaine de définition de la fonction ctgx = est constitué de tous les nombres réels sauf les points x=πk, kЄZ.

Regardons un exemple utilisant un triangle rectangle régulier

Pour clarifier ce que sont le cosinus, le sinus, la tangente et la cotangente. Prenons un exemple sur un triangle rectangle régulier d'angle y et de côtés a,b,c. Hypoténuse c, pattes a et b respectivement. L'angle entre l'hypoténuse c et la jambe b y.

Définition: Le sinus de l'angle y est le rapport du côté opposé à l'hypoténuse : siny = a/c

Définition: Le cosinus de l'angle y est le rapport de la jambe adjacente à l'hypoténuse : cosy= in/c

Définition: La tangente de l'angle y est le rapport du côté opposé au côté adjacent : tgy = a/b

Définition: La cotangente de l'angle y est le rapport du côté adjacent au côté opposé : ctgy= in/a

Le sinus, le cosinus, la tangente et la cotangente sont également appelés fonctions trigonométriques. Chaque angle a son propre sinus et cosinus. Et presque tout le monde a sa propre tangente et cotangente.

On pense que si on nous donne un angle, alors son sinus, son cosinus, sa tangente et sa cotangente nous sont connus ! Et vice versa. Étant donné respectivement un sinus ou toute autre fonction trigonométrique, nous connaissons l’angle. Même des tableaux spéciaux ont été créés dans lesquels les fonctions trigonométriques sont écrites pour chaque angle.

Les notions de sinus (), cosinus (), tangente (), cotangente () sont inextricablement liées à la notion d'angle. Afin de bien comprendre ces concepts, à première vue complexes (qui provoquent un état d'horreur chez de nombreux écoliers), et pour s'assurer que « le diable n'est pas aussi terrible qu'on le peint », commençons par le tout début et comprendre le concept d’angle.

Notion d'angle : radian, degré

Regardons la photo. Le vecteur a « tourné » par rapport au point d’un certain montant. Donc la mesure de cette rotation par rapport à la position initiale sera coin.

Que devez-vous savoir d’autre sur le concept d’angle ? Et bien sûr, les unités d'angle !

L'angle, tant en géométrie qu'en trigonométrie, peut être mesuré en degrés et en radians.

Un angle de (un degré) est appelé angle central dans un cercle, basé sur un arc de cercle égal à une partie du cercle. Ainsi, le cercle entier est constitué de « morceaux » d'arcs de cercle, ou l'angle décrit par le cercle est égal.

Autrement dit, la figure ci-dessus montre un angle égal à, c'est-à-dire que cet angle repose sur un arc de cercle de la taille de la circonférence.

Un angle en radians est l'angle au centre d'un cercle sous-tendu par un arc de cercle dont la longueur est égale au rayon du cercle. Eh bien, avez-vous compris ? Sinon, comprenons-le à partir du dessin.

Ainsi, la figure montre un angle égal à un radian, c'est-à-dire que cet angle repose sur un arc de cercle dont la longueur est égale au rayon du cercle (la longueur est égale à la longueur ou au rayon égal à la longueur arcs). Ainsi, la longueur de l'arc est calculée par la formule :

Où est l’angle central en radians.

Eh bien, sachant cela, pouvez-vous répondre combien de radians sont contenus dans l’angle décrit par le cercle ? Oui, pour cela, vous devez vous rappeler la formule de la circonférence. Elle est là:

Eh bien, corrélons maintenant ces deux formules et constatons que l’angle décrit par le cercle est égal. Autrement dit, en corrélant la valeur en degrés et en radians, nous obtenons cela. Respectivement, . Comme vous pouvez le constater, contrairement à « degrés », le mot « radian » est omis, car l'unité de mesure ressort généralement clairement du contexte.

Combien y a-t-il de radians ? C'est exact!

J'ai compris? Alors allez-y et corrigez-le :

Vous rencontrez des difficultés ? Alors regarde réponses:

Triangle rectangle : sinus, cosinus, tangente, cotangente d'un angle

Nous avons donc compris le concept d'angle. Mais qu’est-ce que le sinus, le cosinus, la tangente et la cotangente d’un angle ? Voyons cela. Pour ce faire, un triangle rectangle nous aidera.

Comment s’appellent les côtés d’un triangle rectangle ? C'est vrai, l'hypoténuse et les jambes : l'hypoténuse est le côté qui se trouve à l'opposé de l'angle droit (dans notre exemple c'est le côté) ; les jambes sont les deux côtés restants et (ceux adjacents à angle droit), et, si l'on considère les jambes par rapport à l'angle, alors la jambe est la jambe adjacente et la jambe est l'opposée. Alors maintenant, répondons à la question : que sont le sinus, le cosinus, la tangente et la cotangente d’un angle ?

Sinus d'angle- c'est le rapport de la jambe opposée (éloignée) à l'hypoténuse.

Dans notre triangle.

Cosinus de l'angle- c'est le rapport entre la jambe adjacente (fermée) et l'hypoténuse.

Dans notre triangle.

Tangente de l'angle- c'est le rapport du côté opposé (éloigné) au côté adjacent (proche).

Dans notre triangle.

Cotangente d'angle- c'est le rapport entre la jambe adjacente (proche) et la jambe opposée (éloignée).

Dans notre triangle.

Ces définitions sont nécessaires souviens-toi! Pour qu'il soit plus facile de se rappeler quelle jambe diviser en quoi, vous devez clairement comprendre que dans tangente Et cotangente seules les jambes sont assises et l'hypoténuse n'apparaît que dans sinus Et cosinus. Et puis vous pouvez créer une chaîne d’associations. Par exemple, celui-ci :

Cosinus → toucher → toucher → adjacent ;

Cotangente → toucher → toucher → adjacent.

Tout d'abord, vous devez vous rappeler que le sinus, le cosinus, la tangente et la cotangente, comme les rapports des côtés d'un triangle, ne dépendent pas des longueurs de ces côtés (au même angle). Ne crois pas? Assurez-vous ensuite en regardant la photo :

Prenons par exemple le cosinus d’un angle. Par définition, à partir d'un triangle : , mais on peut calculer le cosinus d'un angle à partir d'un triangle : . Vous voyez, les longueurs des côtés sont différentes, mais la valeur du cosinus d'un angle est la même. Ainsi, les valeurs du sinus, du cosinus, de la tangente et de la cotangente dépendent uniquement de la grandeur de l'angle.

Si vous comprenez les définitions, alors allez-y et consolidez-les !

Pour le triangle représenté dans la figure ci-dessous, nous trouvons.

Eh bien, tu l'as eu ? Alors essayez-le vous-même : calculez la même chose pour l’angle.

Cercle unitaire (trigonométrique)

Comprenant les notions de degrés et de radians, nous avons considéré un cercle de rayon égal à. Un tel cercle s'appelle célibataire. Ce sera très utile lors de l’étude de la trigonométrie. Par conséquent, regardons-le un peu plus en détail.

Comme vous pouvez le voir, ce cercle est construit dans le système de coordonnées cartésiennes. Le rayon du cercle est égal à un, tandis que le centre du cercle se trouve à l'origine des coordonnées, la position initiale du vecteur rayon est fixée le long de la direction positive de l'axe (dans notre exemple, il s'agit du rayon).

Chaque point du cercle correspond à deux nombres : la coordonnée de l'axe et la coordonnée de l'axe. Quels sont ces numéros de coordonnées ? Et de manière générale, qu’ont-ils à voir avec le sujet abordé ? Pour ce faire, nous devons nous souvenir du triangle rectangle considéré. Dans la figure ci-dessus, vous pouvez voir deux triangles rectangles entiers. Considérons un triangle. Il est rectangulaire car perpendiculaire à l’axe.

A quoi est égal le triangle ? C'est exact. De plus, nous savons qu’il s’agit du rayon du cercle unité, ce qui signifie . Remplaçons cette valeur dans notre formule du cosinus. Voici ce qui se passe :

A quoi est égal le triangle ? Oui bien sur, ! Remplacez la valeur du rayon dans cette formule et obtenez :

Alors, pouvez-vous dire quelles sont les coordonnées d’un point appartenant à un cercle ? Eh bien, pas question ? Et si vous vous rendiez compte de cela et que vous n’étiez que des chiffres ? A quelle coordonnée correspond-il ? Et bien sûr, les coordonnées ! Et à quelle coordonnée correspond-elle ? C'est vrai, les coordonnées ! Donc point final.

À quoi valent donc et sont égaux ? C'est vrai, utilisons les définitions correspondantes de tangente et de cotangente et obtenons cela, a.

Et si l'angle est plus grand ? Par exemple, comme sur cette photo :

Qu'est-ce qui a changé dans dans cet exemple? Voyons cela. Pour ce faire, revenons à un triangle rectangle. Considérons un triangle rectangle : angle (comme adjacent à un angle). Quelles sont les valeurs du sinus, du cosinus, de la tangente et de la cotangente pour un angle ? C'est vrai, nous adhérons aux définitions correspondantes des fonctions trigonométriques :

Eh bien, comme vous pouvez le constater, la valeur du sinus de l'angle correspond toujours à la coordonnée ; la valeur du cosinus de l'angle - la coordonnée ; et les valeurs de tangente et de cotangente aux rapports correspondants. Ainsi, ces relations s’appliquent à toute rotation du rayon vecteur.

Il a déjà été mentionné que la position initiale du rayon vecteur se situe dans la direction positive de l’axe. Jusqu’à présent, nous avons fait pivoter ce vecteur dans le sens inverse des aiguilles d’une montre, mais que se passe-t-il si nous le faisons pivoter dans le sens des aiguilles d’une montre ? Rien d'extraordinaire, vous obtiendrez aussi un angle d'une certaine valeur, mais seulement il sera négatif. Ainsi, en faisant tourner le rayon vecteur dans le sens inverse des aiguilles d'une montre, nous obtenons angles positifs, et en tournant dans le sens des aiguilles d'une montre - négatif.

Ainsi, nous savons qu’une révolution entière du rayon vecteur autour d’un cercle est ou. Est-il possible de faire pivoter le rayon vecteur vers ou vers ? Bien sûr que tu peux! Dans le premier cas, le rayon vecteur fera donc un tour complet et s'arrêtera en position ou.

Dans le deuxième cas, c'est-à-dire que le rayon vecteur fera trois tours complets et s'arrêtera en position ou.

Ainsi, à partir des exemples ci-dessus, nous pouvons conclure que les angles qui diffèrent par ou (où est un nombre entier) correspondent à la même position du rayon vecteur.

La figure ci-dessous montre un angle. La même image correspond au coin, etc. Cette liste peut être poursuivie indéfiniment. Tous ces angles peuvent être écrits par la formule générale ou (où est un nombre entier)

Maintenant, connaissant les définitions des fonctions trigonométriques de base et en utilisant le cercle unité, essayez de répondre quelles sont les valeurs :

Voici un cercle unitaire pour vous aider :

Vous rencontrez des difficultés ? Alors découvrons-le. Nous savons donc que :

A partir de là, on détermine les coordonnées des points correspondant à certaines mesures d'angle. Bon, commençons dans l'ordre : l'angle à correspond à un point avec des coordonnées, donc :

N'existe pas;

De plus, en adhérant à la même logique, nous découvrons que les coins correspondent respectivement à des points avec des coordonnées. Sachant cela, il est facile de déterminer les valeurs des fonctions trigonométriques aux points correspondants. Essayez-le vous-même d'abord, puis vérifiez les réponses.

Réponses:

N'existe pas

N'existe pas

N'existe pas

N'existe pas

Ainsi, nous pouvons faire le tableau suivant :

Il n’est pas nécessaire de mémoriser toutes ces valeurs. Il suffit de rappeler la correspondance entre les coordonnées des points sur le cercle unité et les valeurs des fonctions trigonométriques :

Mais les valeurs des fonctions trigonométriques des angles dans et, données dans le tableau ci-dessous, il faut se souvenir:

N'ayez pas peur, nous allons maintenant vous montrer un exemple assez simple pour retenir les valeurs correspondantes:

Pour utiliser cette méthode, il est essentiel de mémoriser les valeurs du sinus pour les trois mesures d'angle (), ainsi que la valeur de la tangente de l'angle. Connaissant ces valeurs, il est assez simple de restituer l'intégralité du tableau - les valeurs du cosinus sont transférées conformément aux flèches, soit :

Sachant cela, vous pouvez restaurer les valeurs de. Le numérateur " " correspondra et le dénominateur " " correspondra. Les valeurs cotangentes sont transférées conformément aux flèches indiquées sur la figure. Si vous comprenez cela et que vous vous souvenez du diagramme avec les flèches, il suffira alors de mémoriser toutes les valeurs du tableau.

Coordonnées d'un point sur un cercle

Est-il possible de trouver un point (ses coordonnées) sur un cercle, connaître les coordonnées du centre du cercle, son rayon et son angle de rotation?

Bien sûr que tu peux! Sortons-le formule générale pour trouver les coordonnées d'un point.

Par exemple, voici un cercle devant nous :

On nous dit que le point est le centre du cercle. Le rayon du cercle est égal. Il faut trouver les coordonnées d'un point obtenues en faisant pivoter le point de degrés.

Comme le montre la figure, la coordonnée du point correspond à la longueur du segment. La longueur du segment correspond à la coordonnée du centre du cercle, c'est-à-dire qu'elle est égale. La longueur d'un segment peut être exprimée en utilisant la définition du cosinus :

Ensuite, nous avons cela pour la coordonnée du point.

En utilisant la même logique, nous trouvons la valeur de coordonnée y du point. Ainsi,

Alors, dans vue générale les coordonnées des points sont déterminées par les formules :

Coordonnées du centre du cercle,

Rayon du cercle,

L'angle de rotation du rayon vectoriel.

Comme vous pouvez le constater, pour le cercle unité que nous considérons, ces formules sont considérablement réduites, puisque les coordonnées du centre sont égales à zéro et le rayon est égal à un :

Eh bien, essayons ces formules en nous entraînant à trouver des points sur un cercle ?

1. Trouvez les coordonnées d'un point sur le cercle unité obtenu en faisant pivoter le point.

2. Trouvez les coordonnées d'un point sur le cercle unité obtenu en faisant pivoter le point.

3. Trouvez les coordonnées d'un point sur le cercle unité obtenu en faisant pivoter le point.

4. Le point est le centre du cercle. Le rayon du cercle est égal. Il faut retrouver les coordonnées du point obtenu en faisant tourner le rayon vecteur initial de.

5. Le point est le centre du cercle. Le rayon du cercle est égal. Il faut retrouver les coordonnées du point obtenu en faisant tourner le rayon vecteur initial de.

Vous avez du mal à trouver les coordonnées d'un point sur un cercle ?

Résolvez ces cinq exemples (ou apprenez à les résoudre) et vous apprendrez à les trouver !

1.

Vous pouvez le remarquer. Mais on sait ce qui correspond à une révolution complète du point de départ. Ainsi, le point souhaité sera dans la même position que lors du virage. Sachant cela, on trouve les coordonnées recherchées du point :

2. Le cercle unité est centré en un point, ce qui signifie que nous pouvons utiliser des formules simplifiées :

Vous pouvez le remarquer. On sait ce qui correspond à deux tours complets du point de départ. Ainsi, le point souhaité sera dans la même position que lors du virage. Sachant cela, on trouve les coordonnées recherchées du point :

Le sinus et le cosinus sont des valeurs de tableau. Nous rappelons leurs significations et obtenons :

Ainsi, le point souhaité possède des coordonnées.

3. Le cercle unité est centré en un point, ce qui signifie que nous pouvons utiliser des formules simplifiées :

Vous pouvez le remarquer. Représentons l'exemple en question dans la figure :

Le rayon fait des angles égaux à et avec l'axe. Sachant que les valeurs du tableau du cosinus et du sinus sont égales, et ayant déterminé que le cosinus prend ici Sens négatif, et le sinus est positif, on a :

De tels exemples sont discutés plus en détail lors de l'étude des formules de réduction des fonctions trigonométriques dans le sujet.

Ainsi, le point souhaité possède des coordonnées.

4.

Angle de rotation du rayon du vecteur (par condition)

Pour déterminer les signes correspondants du sinus et du cosinus, nous construisons un cercle et un angle unitaires :

Comme vous pouvez le voir, la valeur est positive et la valeur est négative. Connaissant les valeurs tabulaires des fonctions trigonométriques correspondantes, on obtient que :

Remplaçons les valeurs obtenues dans notre formule et trouvons les coordonnées :

Ainsi, le point souhaité possède des coordonnées.

5. Pour résoudre ce problème, nous utilisons des formules sous forme générale, où

Coordonnées du centre du cercle (dans notre exemple,

Rayon du cercle (par condition)

Angle de rotation du rayon du vecteur (par condition).

Remplaçons toutes les valeurs dans la formule et obtenons :

et - les valeurs du tableau. Rappelons-les et substituons-les dans la formule :

Ainsi, le point souhaité possède des coordonnées.

RÉSUMÉ ET FORMULES DE BASE

Le sinus d'un angle est le rapport entre la jambe opposée (lointaine) et l'hypoténuse.

Le cosinus d'un angle est le rapport entre la jambe adjacente (fermée) et l'hypoténuse.

La tangente d'un angle est le rapport entre le côté opposé (éloigné) et le côté adjacent (proche).

La cotangente d'un angle est le rapport entre le côté adjacent (proche) et le côté opposé (éloigné).