एक नियमित पिरामिड के सभी किनारे. ज्यामितीय आकृतियाँ. पिरामिड

पिरामिड. कटा हुआ पिरामिड

पिरामिडएक बहुफलक है, जिसका एक फलक बहुभुज है ( आधार ), और अन्य सभी फलक एक उभयनिष्ठ शीर्ष वाले त्रिभुज हैं ( पार्श्व चेहरे ) (चित्र 15)। पिरामिड कहा जाता है सही , यदि इसका आधार एक नियमित बहुभुज है और पिरामिड का शीर्ष आधार के केंद्र में प्रक्षेपित है (चित्र 16)। वह त्रिभुजाकार पिरामिड कहलाता है जिसके सभी किनारे बराबर हों चतुर्पाश्वीय .



पार्श्व पसलीपिरामिड के पार्श्व फलक का वह भाग होता है जो आधार से संबंधित नहीं होता है ऊंचाई पिरामिड इसके शीर्ष से आधार के तल तक की दूरी है। सभी तरफ की पसलियाँ नियमित पिरामिडएक दूसरे के बराबर, सभी पार्श्व फलक समान समद्विबाहु त्रिभुज हैं। शीर्ष से खींचे गए नियमित पिरामिड के पार्श्व फलक की ऊँचाई कहलाती है एपोटेम . विकर्ण खंड पिरामिड का एक खंड दो पार्श्व किनारों से गुजरने वाले एक विमान द्वारा कहा जाता है जो एक ही चेहरे से संबंधित नहीं होते हैं।

पार्श्व सतह क्षेत्रपिरामिड सभी पार्श्व फलकों के क्षेत्रफलों का योग है। क्षेत्र पूरी सतह इसे सभी पार्श्व फलकों और आधार के क्षेत्रफलों का योग कहा जाता है।

प्रमेयों

1. यदि किसी पिरामिड में सभी पार्श्व किनारे आधार के तल पर समान रूप से झुके हुए हैं, तो पिरामिड का शीर्ष आधार के निकट परिचालित वृत्त के केंद्र में प्रक्षेपित होता है।

2. यदि किसी पिरामिड में सभी पार्श्व किनारे हों समान लंबाई, फिर पिरामिड के शीर्ष को आधार के निकट परिचालित वृत्त के केंद्र में प्रक्षेपित किया जाता है।

3. यदि पिरामिड के सभी फलक आधार के तल पर समान रूप से झुके हुए हैं, तो पिरामिड का शीर्ष आधार में अंकित वृत्त के केंद्र में प्रक्षेपित होता है।

एक मनमाने पिरामिड के आयतन की गणना करने के लिए, सही सूत्र है:

कहाँ वी- आयतन;

एस आधार- आधार क्षेत्र;

एच-पिरामिड की ऊंचाई.

एक नियमित पिरामिड के लिए, निम्नलिखित सूत्र सही हैं:

कहाँ पी- आधार परिधि;

हा ए– एपोटेम;

एच- ऊंचाई;

एस भरा हुआ

एस ओर

एस आधार- आधार क्षेत्र;

वी– एक नियमित पिरामिड का आयतन.

कटा हुआ पिरामिडपिरामिड के आधार और आधार के समानांतर काटने वाले तल के बीच घिरे पिरामिड के भाग को कहा जाता है (चित्र 17)। नियमित रूप से काटे गए पिरामिड यह एक नियमित पिरामिड का हिस्सा है जो आधार और पिरामिड के आधार के समानांतर काटने वाले तल के बीच घिरा होता है।

मैदानकाटे गए पिरामिड - समान बहुभुज। पार्श्व चेहरे - ट्रेपेज़ोइड्स। ऊंचाई एक काटे गए पिरामिड की दूरी उसके आधारों के बीच की दूरी है। विकर्ण एक कटा हुआ पिरामिड अपने शीर्षों को जोड़ने वाला एक खंड है जो एक ही सतह पर नहीं होते हैं। विकर्ण खंड एक विमान द्वारा काटे गए पिरामिड का एक खंड दो पार्श्व किनारों से होकर गुजरता है जो एक ही सतह से संबंधित नहीं हैं।


काटे गए पिरामिड के लिए निम्नलिखित सूत्र मान्य हैं:

(4)

कहाँ एस 1 , एस 2 - ऊपरी और निचले आधारों के क्षेत्र;

एस भरा हुआ- कुल सतह क्षेत्र;

एस ओर- पार्श्व सतह क्षेत्र;

एच- ऊंचाई;

वी- एक काटे गए पिरामिड का आयतन।

नियमित रूप से काटे गए पिरामिड के लिए सूत्र सही है:

कहाँ पी 1 , पी 2 - आधारों की परिधि;

हा ए- एक नियमित रूप से काटे गए पिरामिड का एपोटेम।

उदाहरण 1.एक नियमित त्रिकोणीय पिरामिड में, आधार पर डायहेड्रल कोण 60º होता है। आधार के तल पर पार्श्व किनारे के झुकाव के कोण की स्पर्श रेखा ज्ञात कीजिए।

समाधान।आइए एक चित्र बनाएं (चित्र 18)।


पिरामिड नियमित है, जिसका अर्थ है कि आधार पर एक समबाहु त्रिभुज है और सभी पार्श्व फलक समान समद्विबाहु त्रिभुज हैं। आधार पर डायहेड्रल कोण पिरामिड के पार्श्व पृष्ठ और आधार के तल के झुकाव का कोण है। रैखिक कोण ही कोण है दो लंबों के बीच: आदि। पिरामिड का शीर्ष त्रिभुज के केंद्र (त्रिभुज के परिवृत्त और उत्कीर्ण वृत्त का केंद्र) पर प्रक्षेपित है एबीसी). पार्श्व किनारे के झुकाव का कोण (उदाहरण के लिए)। एस.बी.) किनारे और आधार के तल पर उसके प्रक्षेपण के बीच का कोण है। पसली के लिए एस.बी.यह कोण कोण होगा एसबीडी. स्पर्श रेखा ज्ञात करने के लिए आपको पाद जानने की आवश्यकता है इसलिएऔर ओ.बी.. चलो खंड की लंबाई बी.डी 3 के बराबर है . डॉट के बारे मेंखंड बी.डीभागों में विभाजित है: तथा से हम पाते हैं इसलिए: से हम पाते हैं:

उत्तर:

उदाहरण 2.सही काटे गए का आयतन ज्ञात कीजिए चतुर्भुज पिरामिड, यदि इसके आधारों के विकर्ण सेमी और सेमी के बराबर हैं, और इसकी ऊंचाई 4 सेमी है।

समाधान।काटे गए पिरामिड का आयतन ज्ञात करने के लिए, हम सूत्र (4) का उपयोग करते हैं। आधारों का क्षेत्रफल ज्ञात करने के लिए, आपको उनके विकर्णों को जानते हुए, आधार वर्गों की भुजाएँ ज्ञात करनी होंगी। आधारों की भुजाएँ क्रमशः 2 सेमी और 8 सेमी के बराबर हैं। इसका अर्थ है आधारों का क्षेत्रफल और सभी डेटा को सूत्र में प्रतिस्थापित करते हुए, हम काटे गए पिरामिड के आयतन की गणना करते हैं:

उत्तर: 112 सेमी 3.

उदाहरण 3.एक नियमित त्रिभुजाकार काटे गए पिरामिड के पार्श्व फलक का क्षेत्रफल ज्ञात कीजिए, जिसके आधारों की भुजाएँ 10 सेमी और 4 सेमी हैं, और पिरामिड की ऊँचाई 2 सेमी है।

समाधान।आइए एक चित्र बनाएं (चित्र 19)।


इस पिरामिड का पार्श्व फलक एक समद्विबाहु समलम्बाकार है। किसी समलम्ब चतुर्भुज के क्षेत्रफल की गणना करने के लिए, आपको आधार और ऊँचाई जानने की आवश्यकता है। आधार शर्त के अनुसार दिये गये हैं, केवल ऊँचाई अज्ञात रहती है। हम उसे कहां से ढूंढेंगे 1 एक बिंदु से लंबवत 1 निचले आधार के तल पर, 1 डी– से लंबवत 1 प्रति ए.सी. 1 = 2 सेमी, चूँकि यह पिरामिड की ऊँचाई है। ढूँढ़ने के लिए डी.ईआइए शीर्ष दृश्य दिखाते हुए एक अतिरिक्त चित्र बनाएं (चित्र 20)। डॉट के बारे में- ऊपरी और निचले आधारों के केंद्रों का प्रक्षेपण। चूंकि (चित्र 20 देखें) और दूसरी ओर ठीक है– वृत्त में अंकित त्रिज्या तथा ओम– एक वृत्त में अंकित त्रिज्या:

एमके = डीई.

पाइथागोरस प्रमेय के अनुसार

पार्श्व चेहरा क्षेत्र:


उत्तर:

उदाहरण 4.पिरामिड के आधार पर एक समद्विबाहु समलंब है, जिसके आधार हैं और बी (> बी). प्रत्येक पार्श्व फलक पिरामिड के आधार के तल के बराबर एक कोण बनाता है जे. पिरामिड का कुल पृष्ठीय क्षेत्रफल ज्ञात कीजिये।

समाधान।आइए एक चित्र बनाएं (चित्र 21)। पिरामिड का कुल सतह क्षेत्रफल एसएबीसीडीक्षेत्रफलों और समलम्ब चतुर्भुज के क्षेत्रफल के योग के बराबर ए बी सी डी.

आइए इस कथन का उपयोग करें कि यदि पिरामिड के सभी चेहरे आधार के तल पर समान रूप से झुके हुए हैं, तो शीर्ष को आधार में अंकित वृत्त के केंद्र में प्रक्षेपित किया जाता है। डॉट के बारे में– शीर्ष प्रक्षेपण एसपिरामिड के आधार पर. त्रिकोण एसओडीत्रिभुज का ओर्थोगोनल प्रक्षेपण है क्रिस्टोफ़र स्ट्रीट डेआधार के तल तक. ओर्थोगोनल प्रक्षेपण के क्षेत्र पर प्रमेय द्वारा सपाट आकृतिहम पाते हैं:


वैसे ही इसका मतलब है इस प्रकार, समस्या समलंब चतुर्भुज का क्षेत्रफल ज्ञात करने तक सीमित रह गई ए बी सी डी. आइए एक समलम्ब चतुर्भुज बनाएं ए बी सी डीअलग से (चित्र 22)। डॉट के बारे में- एक समलम्ब चतुर्भुज में अंकित वृत्त का केंद्र।


चूँकि एक वृत्त को एक समलम्ब चतुर्भुज में अंकित किया जा सकता है, तो या पाइथागोरस प्रमेय से हमारे पास है


परिभाषा। पार्श्व किनारा- यह एक त्रिभुज है जिसमें एक कोण पिरामिड के शीर्ष पर स्थित है, और विपरीत पक्ष आधार (बहुभुज) के पक्ष से मेल खाता है।

परिभाषा। पार्श्व पसलियाँ- ये पार्श्व फलकों की सामान्य भुजाएँ हैं। एक पिरामिड में उतने ही किनारे होते हैं जितने एक बहुभुज के कोण होते हैं।

परिभाषा। पिरामिड की ऊंचाई- यह पिरामिड के ऊपर से आधार तक डाला गया एक लंब है।

परिभाषा। एपोथेम- यह पिरामिड के पार्श्व मुख का लंबवत है, जो पिरामिड के शीर्ष से आधार के किनारे तक उतारा गया है।

परिभाषा। विकर्ण खंड- यह पिरामिड के शीर्ष और आधार के विकर्ण से गुजरने वाले विमान द्वारा पिरामिड का एक खंड है।

परिभाषा। सही पिरामिडएक पिरामिड है जिसमें आधार एक नियमित बहुभुज है, और ऊंचाई आधार के केंद्र तक उतरती है।


पिरामिड का आयतन और सतह क्षेत्र

सूत्र. पिरामिड का आयतनआधार क्षेत्र और ऊंचाई के माध्यम से:


पिरामिड के गुण

यदि सभी पार्श्व किनारे समान हैं, तो पिरामिड के आधार के चारों ओर एक वृत्त खींचा जा सकता है, और आधार का केंद्र वृत्त के केंद्र के साथ मेल खाता है। साथ ही, ऊपर से गिराया गया एक लंब आधार (वृत्त) के केंद्र से होकर गुजरता है।

यदि सभी पार्श्व किनारे समान हैं, तो वे आधार के तल पर समान कोण पर झुके हुए हैं।

पार्श्व पसलियाँ तब बराबर होती हैं जब वे आधार के तल के साथ बनती हैं समान कोणया यदि पिरामिड के आधार के चारों ओर एक वृत्त का वर्णन किया जा सकता है।

यदि पार्श्व फलक एक ही कोण पर आधार के तल पर झुके हुए हैं, तो पिरामिड के आधार में एक वृत्त अंकित किया जा सकता है, और पिरामिड के शीर्ष को उसके केंद्र में प्रक्षेपित किया जा सकता है।

यदि पार्श्व फलक आधार के तल पर एक ही कोण पर झुके हों, तो पार्श्व फलक के एपोथेम बराबर होते हैं।


एक नियमित पिरामिड के गुण

1. पिरामिड का शीर्ष आधार के सभी कोनों से समान दूरी पर है।

2. सभी पार्श्व किनारे बराबर हैं।

3. सभी पार्श्व पसलियाँ आधार से समान कोण पर झुकी हुई हैं।

4. सभी पार्श्व फलकों के अक्षर समान होते हैं।

5. सभी पार्श्व फलकों का क्षेत्रफल बराबर है।

6. सभी फलकों का डायहेड्रल (सपाट) कोण समान होता है।

7. पिरामिड के चारों ओर एक गोले का वर्णन किया जा सकता है। परिबद्ध गोले का केंद्र किनारों के मध्य से गुजरने वाले लंबों का प्रतिच्छेदन बिंदु होगा।

8. आप एक गोले को पिरामिड में फिट कर सकते हैं। अंकित गोले का केंद्र किनारे और आधार के बीच के कोण से निकलने वाले द्विभाजक का प्रतिच्छेदन बिंदु होगा।

9. यदि उत्कीर्ण गोले का केंद्र परिचालित गोले के केंद्र के साथ मेल खाता है, तो शीर्ष पर समतल कोणों का योग π के बराबर है या इसके विपरीत, एक कोण π/n के बराबर है, जहां n संख्या है पिरामिड के आधार पर कोणों की संख्या.


पिरामिड और गोले के बीच संबंध

पिरामिड के चारों ओर एक गोले का वर्णन तब किया जा सकता है जब पिरामिड के आधार पर एक बहुफलक हो जिसके चारों ओर एक वृत्त का वर्णन किया जा सके (एक आवश्यक और पर्याप्त स्थिति)। गोले का केंद्र पिरामिड के पार्श्व किनारों के मध्य बिंदुओं से लंबवत गुजरने वाले विमानों का प्रतिच्छेदन बिंदु होगा।

किसी भी त्रिकोणीय या नियमित पिरामिड के चारों ओर एक गोले का वर्णन करना हमेशा संभव होता है।

यदि पिरामिड के आंतरिक डायहेड्रल कोणों के द्विभाजक विमान एक बिंदु (एक आवश्यक और पर्याप्त शर्त) पर प्रतिच्छेद करते हैं तो एक गोले को पिरामिड में अंकित किया जा सकता है। यह बिंदु गोले का केंद्र होगा.


एक शंकु के साथ पिरामिड का कनेक्शन

एक शंकु को पिरामिड में अंकित कहा जाता है यदि उनके शीर्ष संपाती हों और शंकु का आधार पिरामिड के आधार में अंकित हो।

एक शंकु को पिरामिड में अंकित किया जा सकता है यदि पिरामिड के एपोथेम एक दूसरे के बराबर हों।

एक शंकु को पिरामिड के चारों ओर परिचालित कहा जाता है यदि उनके शीर्ष संपाती हों और शंकु का आधार पिरामिड के आधार के चारों ओर परिचालित हो।

एक शंकु को पिरामिड के चारों ओर वर्णित किया जा सकता है यदि पिरामिड के सभी पार्श्व किनारे एक दूसरे के बराबर हों।


पिरामिड और सिलेंडर के बीच संबंध

एक पिरामिड को सिलेंडर में अंकित कहा जाता है यदि पिरामिड का शीर्ष सिलेंडर के एक आधार पर स्थित है, और पिरामिड का आधार सिलेंडर के दूसरे आधार पर अंकित है।

यदि पिरामिड के आधार के चारों ओर एक वृत्त का वर्णन किया जा सकता है, तो पिरामिड के चारों ओर एक सिलेंडर का वर्णन किया जा सकता है।


परिभाषा। काटे गए पिरामिड (पिरामिड प्रिज्म)एक बहुफलक है जो पिरामिड के आधार और आधार के समानांतर अनुभाग तल के बीच स्थित होता है। इस प्रकार पिरामिड का एक बड़ा आधार और एक छोटा आधार होता है जो बड़े पिरामिड के समान होता है। पार्श्व फलक समलम्बाकार हैं।

परिभाषा। त्रिकोणीय पिरामिड (चतुष्फलक)एक पिरामिड है जिसमें तीन फलक और आधार मनमाना त्रिभुज हैं।

एक चतुष्फलक के चार फलक और चार शीर्ष और छह किनारे होते हैं, जहां किन्हीं दो किनारों में उभयनिष्ठ शीर्ष नहीं होते हैं लेकिन वे स्पर्श नहीं करते हैं।

प्रत्येक शीर्ष में तीन फलक और किनारे होते हैं जो बनते हैं त्रिकोणीय कोण.

चतुष्फलक के शीर्ष को विपरीत फलक के केंद्र से जोड़ने वाले खंड को कहा जाता है चतुष्फलक का माध्यिका(जीएम).

बिमेडियनविपरीत किनारों के मध्य बिंदुओं को जोड़ने वाला एक खंड कहा जाता है जो स्पर्श नहीं करते (केएल)।

चतुष्फलक की सभी द्विमध्यरेखाएँ और मध्यिकाएँ एक बिंदु (S) पर प्रतिच्छेद करती हैं। इस मामले में, द्विमध्यरेखाओं को आधे में विभाजित किया जाता है, और शीर्ष से शुरू करके मध्यिकाओं को 3:1 के अनुपात में विभाजित किया जाता है।

परिभाषा। तिरछा पिरामिडएक पिरामिड है जिसका एक किनारा आधार के साथ एक अधिक कोण (β) बनाता है।

परिभाषा। आयताकार पिरामिडएक पिरामिड है जिसका एक पार्श्व फलक आधार से लंबवत है।

परिभाषा। न्यूनकोण पिरामिड- एक पिरामिड जिसमें एपोथेम आधार के किनारे की लंबाई के आधे से अधिक है।

परिभाषा। कुंठित पिरामिड- एक पिरामिड जिसमें एपोथेम आधार के किनारे की लंबाई के आधे से भी कम है।

परिभाषा। नियमित चतुष्फलक- एक चतुष्फलक जिसके चारों फलक समबाहु त्रिभुज हों। यह पाँच नियमित बहुभुजों में से एक है। एक नियमित चतुष्फलक में, सभी द्विफलकीय कोण (फलकों के बीच) और त्रिफलकीय कोण (शीर्ष पर) बराबर होते हैं।

परिभाषा। आयताकार चतुष्फलकशीर्ष पर तीन किनारों के बीच समकोण वाला एक चतुष्फलक है (किनारे लंबवत हैं)। तीन चेहरे बनते हैं आयताकार त्रिकोणीय कोणऔर फलक समकोण त्रिभुज हैं, और आधार एक मनमाना त्रिभुज है। किसी भी फलक का एपोटेम आधार के आधे हिस्से के बराबर होता है जिस पर एपोथेम गिरता है।

परिभाषा। समफलकीय चतुष्फलकचतुष्फलक कहलाता है जिसके पार्श्व फलक एक दूसरे के बराबर होते हैं और आधार होता है नियमित त्रिकोण. ऐसे चतुष्फलक के फलक समद्विबाहु त्रिभुज होते हैं।

परिभाषा। ऑर्थोसेंट्रिक टेट्राहेड्रोनचतुष्फलक कहलाता है जिसमें ऊपर से विपरीत फलक तक नीचे की ओर जाने वाली सभी ऊँचाइयाँ (लंब) एक बिंदु पर प्रतिच्छेद करती हैं।

परिभाषा। तारा पिरामिडएक बहुफलक कहलाता है जिसका आधार एक तारा है।

परिभाषा। bipyramid- एक बहुफलक जिसमें दो अलग-अलग पिरामिड होते हैं (पिरामिड को काटा भी जा सकता है), जिसका आधार एक समान होता है और शीर्ष तल के विपरीत दिशा में स्थित होते हैं।

त्रिकोणीय पिरामिड एक ऐसा पिरामिड है जिसके आधार पर एक त्रिकोण होता है। इस पिरामिड की ऊँचाई वह लम्ब है जो पिरामिड के शीर्ष से उसके आधार तक उतारा जाता है।

पिरामिड की ऊंचाई ज्ञात करना

पिरामिड की ऊंचाई कैसे पता करें? बहुत सरल! किसी की ऊंचाई ज्ञात करने के लिए त्रिकोणीय पिरामिडआप आयतन सूत्र का उपयोग कर सकते हैं: V = (1/3)Sh, जहां S आधार का क्षेत्रफल है, V पिरामिड का आयतन है, h इसकी ऊंचाई है। इस सूत्र से, ऊँचाई का सूत्र प्राप्त करें: त्रिकोणीय पिरामिड की ऊँचाई ज्ञात करने के लिए, आपको पिरामिड के आयतन को 3 से गुणा करना होगा, और फिर परिणामी मान को आधार के क्षेत्रफल से विभाजित करना होगा, यह होगा: h = (3वी)/एस. चूँकि त्रिभुजाकार पिरामिड का आधार एक त्रिभुज है, आप त्रिभुज के क्षेत्रफल की गणना करने के लिए सूत्र का उपयोग कर सकते हैं। यदि हम जानते हैं: त्रिभुज S और उसकी भुजा z का क्षेत्रफल, तो क्षेत्रफल सूत्र S=(1/2)γh के अनुसार: h = (2S)/γ, जहां h पिरामिड की ऊंचाई है, γ त्रिभुज का किनारा है; त्रिभुज की भुजाओं और दोनों भुजाओं के बीच का कोण, फिर निम्नलिखित सूत्र का उपयोग करके: S = (1/2)γφsinQ, जहां γ, φ त्रिभुज की भुजाएं हैं, हम त्रिभुज का क्षेत्रफल ज्ञात करते हैं। कोण Q की ज्या का मान ज्या की तालिका में देखने की जरूरत है, जो इंटरनेट पर उपलब्ध है। इसके बाद, हम क्षेत्र मान को ऊंचाई सूत्र में प्रतिस्थापित करते हैं: h = (2S)/γ। यदि कार्य में त्रिकोणीय पिरामिड की ऊंचाई की गणना करने की आवश्यकता है, तो पिरामिड का आयतन पहले से ही ज्ञात है।

नियमित त्रिकोणीय पिरामिड

एक नियमित त्रिकोणीय पिरामिड की ऊंचाई ज्ञात करें, अर्थात, एक पिरामिड जिसमें सभी चेहरे समबाहु त्रिकोण हैं, किनारे γ के आकार को जानते हुए। इस मामले में, पिरामिड के किनारे समबाहु त्रिभुज की भुजाएँ हैं। एक नियमित त्रिकोणीय पिरामिड की ऊंचाई होगी: h = γ√(2/3), जहां γ एक किनारा है समान भुजाओं वाला त्रिकोण, h पिरामिड की ऊंचाई है। यदि आधार (एस) का क्षेत्र अज्ञात है, और केवल किनारे की लंबाई (γ) और पॉलीहेड्रॉन की मात्रा (वी) दी गई है, तो पिछले चरण से सूत्र में आवश्यक चर को प्रतिस्थापित किया जाना चाहिए इसके समतुल्य द्वारा, जिसे किनारे की लंबाई के रूप में व्यक्त किया जाता है। एक त्रिभुज का क्षेत्रफल (नियमित) 3 के वर्गमूल द्वारा वर्गित इस त्रिभुज की भुजा की लंबाई के गुणनफल के 1/4 के बराबर है। हम पिछले में आधार के क्षेत्रफल के बजाय इस सूत्र को प्रतिस्थापित करते हैं सूत्र, और हमें निम्नलिखित सूत्र प्राप्त होता है: h = 3V4/(γ 2 √3) = 12V/(γ 2 √3)। टेट्राहेड्रोन का आयतन उसके किनारे की लंबाई के माध्यम से व्यक्त किया जा सकता है, फिर किसी आकृति की ऊंचाई की गणना करने के सूत्र से, आप सभी चर हटा सकते हैं और आकृति के त्रिकोणीय चेहरे के केवल किनारे को छोड़ सकते हैं। ऐसे पिरामिड के आयतन की गणना उसके फलक की घन लंबाई के गुणनफल को 2 के वर्गमूल से विभाजित करके 12 से विभाजित करके की जा सकती है।

इस अभिव्यक्ति को पिछले सूत्र में प्रतिस्थापित करने पर, हमें गणना के लिए निम्नलिखित सूत्र प्राप्त होता है: h = 12(γ 3 √2/12)/(γ 2 √3) = (γ 3 √2)/(γ 2 √3) = γ √(2 /3) = (1/3)γ√6. सही भी है त्रिकोणीय प्रिज्मएक गोले में अंकित किया जा सकता है, और केवल गोले की त्रिज्या (R) जानकर ही चतुष्फलक की ऊंचाई ज्ञात की जा सकती है। टेट्राहेड्रोन किनारे की लंबाई है: γ = 4R/√6। हम पिछले सूत्र में इस अभिव्यक्ति के साथ चर γ को प्रतिस्थापित करते हैं और सूत्र प्राप्त करते हैं: h = (1/3)√6(4R)/√6 = (4R)/3। चतुष्फलक में अंकित वृत्त की त्रिज्या (R) जानकर वही सूत्र प्राप्त किया जा सकता है। इस स्थिति में, त्रिभुज के किनारे की लंबाई बीच के 12 अनुपातों के बराबर होगी वर्गमूल 6 और त्रिज्या का. हम इस अभिव्यक्ति को पिछले सूत्र में प्रतिस्थापित करते हैं और हमारे पास है: h = (1/3)γ√6 = (1/3)√6(12R)/√6 = 4R।

एक नियमित चतुर्भुज पिरामिड की ऊंचाई कैसे ज्ञात करें

पिरामिड की ऊंचाई की लंबाई कैसे ज्ञात करें, इस प्रश्न का उत्तर देने के लिए, आपको यह जानना होगा कि एक नियमित पिरामिड क्या है। चतुर्भुज पिरामिड एक ऐसा पिरामिड है जिसके आधार पर एक चतुर्भुज होता है। यदि समस्या की स्थितियों में हमारे पास है: आयतन (V) और पिरामिड के आधार का क्षेत्रफल (S), तो बहुफलक की ऊंचाई (h) की गणना करने का सूत्र इस प्रकार होगा - आयतन को गुणा से विभाजित करें क्षेत्र S द्वारा 3 से: h = (3V)/S। दिए गए आयतन (V) और भुजा की लंबाई γ के साथ पिरामिड के वर्गाकार आधार को देखते हुए, पिछले सूत्र में क्षेत्रफल (S) को भुजा की लंबाई के वर्ग से बदलें: S = γ 2; एच = 3V/γ2. एक नियमित पिरामिड की ऊँचाई h = SO आधार के निकट परिचालित वृत्त के ठीक केंद्र से होकर गुजरती है। चूँकि इस पिरामिड का आधार एक वर्ग है, बिंदु O विकर्ण AD और BC का प्रतिच्छेदन बिंदु है। हमारे पास है: OC = (1/2)BC = (1/2)AB√6। अगला, हम अंदर हैं सही त्रिकोणहम SOC पाते हैं (पाइथागोरस प्रमेय का उपयोग करके): SO = √(SC 2 -OC 2)। अब आप जानते हैं कि एक नियमित पिरामिड की ऊंचाई कैसे ज्ञात करें।

हम गणित में एकीकृत राज्य परीक्षा में शामिल कार्यों पर विचार करना जारी रखते हैं। हम पहले ही उन समस्याओं का अध्ययन कर चुके हैं जहां शर्त दी गई है और दो दिए गए बिंदुओं या कोण के बीच की दूरी ज्ञात करना आवश्यक है।

पिरामिड एक बहुफलक है, जिसका आधार एक बहुभुज है, शेष फलक त्रिभुज हैं, और उनका एक उभयनिष्ठ शीर्ष है।

एक नियमित पिरामिड एक पिरामिड है जिसके आधार पर एक नियमित बहुभुज होता है, और इसका शीर्ष आधार के केंद्र में प्रक्षेपित होता है।

एक नियमित चतुर्भुज पिरामिड - आधार एक वर्ग है। पिरामिड का शीर्ष आधार (वर्ग) के विकर्णों के प्रतिच्छेदन बिंदु पर प्रक्षेपित होता है।


एमएल - एपोथेम
∠MLO - पिरामिड के आधार पर डायहेड्रल कोण
∠MCO - पिरामिड के पार्श्व किनारे और आधार के तल के बीच का कोण

इस लेख में हम एक नियमित पिरामिड को हल करने के लिए समस्याओं पर गौर करेंगे। आपको कुछ तत्व, पार्श्व सतह क्षेत्र, आयतन, ऊंचाई खोजने की आवश्यकता है। बेशक, आपको पाइथागोरस प्रमेय, पिरामिड की पार्श्व सतह के क्षेत्रफल का सूत्र और पिरामिड का आयतन ज्ञात करने का सूत्र जानना होगा।

लेख में "" वे सूत्र प्रस्तुत करता है जो स्टीरियोमेट्री में समस्याओं को हल करने के लिए आवश्यक हैं। तो, कार्य:

एसएबीसीडीडॉट हे- आधार का केंद्र,एसशिखर, इसलिए = 51, ए.सी.= 136. पार्श्व किनारा ज्ञात कीजिएअनुसूचित जाति।.

में इस मामले मेंआधार एक वर्ग है. इसका मतलब यह है कि विकर्ण AC और BD बराबर हैं, वे प्रतिच्छेद करते हैं और प्रतिच्छेदन बिंदु से समद्विभाजित होते हैं। ध्यान दें कि एक नियमित पिरामिड में उसके शीर्ष से गिरी हुई ऊंचाई पिरामिड के आधार के केंद्र से होकर गुजरती है। अतः SO ऊँचाई और त्रिभुज हैसमाजआयताकार. फिर पाइथागोरस प्रमेय के अनुसार:

जड़ कैसे निकाले बड़ी संख्या.

उत्तर: 85

अपने लिए तय करें:

एक नियमित चतुर्भुज पिरामिड में एसएबीसीडीडॉट हे- आधार का केंद्र, एसशिखर, इसलिए = 4, ए.सी.= 6. पार्श्व किनारा ज्ञात कीजिए अनुसूचित जाति।.

एक नियमित चतुर्भुज पिरामिड में एसएबीसीडीडॉट हे- आधार का केंद्र, एसशिखर, अनुसूचित जाति। = 5, ए.सी.= 6. खंड की लंबाई ज्ञात कीजिए इसलिए.

एक नियमित चतुर्भुज पिरामिड में एसएबीसीडीडॉट हे- आधार का केंद्र, एसशिखर, इसलिए = 4, अनुसूचित जाति।= 5. खंड की लंबाई ज्ञात करें ए.सी..

एसएबीसी आर- पसली के बीच में ईसा पूर्व, एस- शीर्ष। ह ज्ञात है कि अब= 7, ए एस.आर.= 16. पार्श्व पृष्ठीय क्षेत्रफल ज्ञात कीजिए।

एक नियमित त्रिकोणीय पिरामिड की पार्श्व सतह का क्षेत्रफल आधार और एपोथेम की परिधि के आधे उत्पाद के बराबर होता है (एपोथेम इसके शीर्ष से खींचे गए नियमित पिरामिड के पार्श्व चेहरे की ऊंचाई है):

या हम यह कह सकते हैं: पिरामिड की पार्श्व सतह का क्षेत्रफल योग के बराबर है तीन वर्गपार्श्व किनारे. एक नियमित त्रिभुजाकार पिरामिड में पार्श्व फलक समान क्षेत्रफल वाले त्रिभुज होते हैं। इस मामले में:

उत्तर: 168

अपने लिए तय करें:

एक नियमित त्रिकोणीय पिरामिड में एसएबीसी आर- पसली के बीच में ईसा पूर्व, एस- शीर्ष। ह ज्ञात है कि अब= 1, ए एस.आर.= 2. पार्श्व पृष्ठीय क्षेत्रफल ज्ञात कीजिए।

एक नियमित त्रिकोणीय पिरामिड में एसएबीसी आर- पसली के बीच में ईसा पूर्व, एस- शीर्ष। ह ज्ञात है कि अब= 1, और पार्श्व सतह का क्षेत्रफल 3 है। खंड की लंबाई ज्ञात कीजिए एस.आर..

एक नियमित त्रिकोणीय पिरामिड में एसएबीसी एल- पसली के बीच में ईसा पूर्व, एस- शीर्ष। ह ज्ञात है कि क्र= 2, और पार्श्व सतह का क्षेत्रफल 3 है। खंड की लंबाई ज्ञात कीजिए अब.

एक नियमित त्रिकोणीय पिरामिड में एसएबीसी एम. एक त्रिभुज का क्षेत्रफल एबीसी 25 है, पिरामिड का आयतन 100 है। खंड की लंबाई ज्ञात कीजिए एमएस.

पिरामिड का आधार एक समबाहु त्रिभुज है. इसीलिए एमआधार का केंद्र है, औरएमएस- एक नियमित पिरामिड की ऊंचाईएसएबीसी. पिरामिड का आयतन एसएबीसीबराबर: समाधान देखें

एक नियमित त्रिकोणीय पिरामिड में एसएबीसीआधार की माध्यिकाएं बिंदु पर प्रतिच्छेद करती हैं एम. एक त्रिभुज का क्षेत्रफल एबीसी 3 के बराबर है, एमएस= 1. पिरामिड का आयतन ज्ञात कीजिए।

एक नियमित त्रिकोणीय पिरामिड में एसएबीसीआधार की माध्यिकाएं बिंदु पर प्रतिच्छेद करती हैं एम. पिरामिड का आयतन 1 है, एमएस= 1. त्रिभुज का क्षेत्रफल ज्ञात कीजिये एबीसी.

आइए यहीं समाप्त करें। जैसा कि आप देख सकते हैं, समस्याओं का समाधान एक या दो चरणों में हो जाता है। भविष्य में, हम इस भाग की अन्य समस्याओं पर विचार करेंगे, जहाँ क्रांति के शव दिए गए हैं, इसे देखने से न चूकें!

आप सौभाग्यशाली हों!

सादर, अलेक्जेंडर क्रुतित्सिख।

पुनश्च: यदि आप मुझे सोशल नेटवर्क पर साइट के बारे में बताएंगे तो मैं आभारी रहूंगा।

परिभाषा

पिरामिडएक बहुफलक एक बहुभुज \(A_1A_2...A_n\) और \(n\) त्रिभुजों से बना है, जिसका एक उभयनिष्ठ शीर्ष \(P\) है (बहुभुज के तल में नहीं है) और भुजाएं इसके विपरीत हैं, जो इसके साथ मेल खाती हैं। बहुभुज के किनारे.
पदनाम: \(PA_1A_2...A_n\) .
उदाहरण: पंचकोणीय पिरामिड \(PA_1A_2A_3A_4A_5\) .

त्रिभुज \(PA_1A_2, \PA_2A_3\), आदि। कहा जाता है पार्श्व चेहरेपिरामिड, खंड \(PA_1, PA_2\), आदि। – पार्श्व पसलियाँ, बहुभुज \(A_1A_2A_3A_4A_5\) – आधार, बिंदु \(P\) - शीर्ष.

ऊंचाईपिरामिड पिरामिड के शीर्ष से आधार के तल तक उतरा हुआ एक लंब है।

एक पिरामिड जिसके आधार पर एक त्रिभुज होता है, कहलाता है चतुर्पाश्वीय.

पिरामिड कहा जाता है सही, यदि इसका आधार एक नियमित बहुभुज है और निम्नलिखित शर्तों में से एक पूरी होती है:

\((a)\) पिरामिड के पार्श्व किनारे बराबर हैं;

\((बी)\) पिरामिड की ऊंचाई आधार के निकट परिचालित वृत्त के केंद्र से होकर गुजरती है;

\((c)\) पार्श्व पसलियां आधार के तल पर एक ही कोण पर झुकी हुई हैं।

\((d)\) पार्श्व फलक आधार के तल पर एक ही कोण पर झुके हुए हैं।

नियमित चतुष्फलकएक त्रिभुजाकार पिरामिड है, जिसके सभी फलक समान समबाहु त्रिभुज हैं।

प्रमेय

स्थितियाँ \((a), (b), (c), (d)\) समतुल्य हैं।

सबूत

आइए पिरामिड \(PH\) की ऊंचाई ज्ञात करें। मान लीजिए \(\alpha\) पिरामिड के आधार का तल है।


1) आइए हम साबित करें कि \((a)\) का तात्पर्य \((b)\) है। मान लीजिए \(PA_1=PA_2=PA_3=...=PA_n\) .

क्योंकि \(PH\perp \alpha\), तो \(PH\) इस तल में पड़ी किसी भी रेखा पर लंबवत है, जिसका अर्थ है कि त्रिभुज समकोण हैं। इसका मतलब यह है कि ये त्रिभुज उभयनिष्ठ पाद \(PH\) और कर्ण \(PA_1=PA_2=PA_3=...=PA_n\) में बराबर हैं। इसका मतलब है \(A_1H=A_2H=...=A_nH\) . इसका मतलब है कि बिंदु \(A_1, A_2, ..., A_n\) बिंदु \(H\) से समान दूरी पर हैं, इसलिए, वे त्रिज्या \(A_1H\) के साथ एक ही वृत्त पर स्थित हैं। परिभाषा के अनुसार, यह वृत्त बहुभुज \(A_1A_2...A_n\) के चारों ओर परिचालित है।

2) आइए हम साबित करें कि \((b)\) का तात्पर्य \((c)\) है।

\(PA_1H, PA_2H, PA_3H,..., PA_nH\)आयताकार और दो पैरों पर बराबर। इसका मतलब यह है कि उनके कोण भी बराबर हैं, इसलिए, \(\कोण PA_1H=\कोण PA_2H=...=\कोण PA_nH\).

3) आइए हम साबित करें कि \((c)\) का तात्पर्य \((a)\) है।

पहले बिंदु के समान, त्रिकोण \(PA_1H, PA_2H, PA_3H,..., PA_nH\)आयताकार और पैर के साथ और तेज़ कोना. इसका मतलब है कि उनके कर्ण भी बराबर हैं, यानी, \(PA_1=PA_2=PA_3=...=PA_n\) ।

4) आइए हम साबित करें कि \((b)\) का तात्पर्य \((d)\) है।

क्योंकि एक नियमित बहुभुज में परिचालित और खुदे हुए वृत्तों के केंद्र संपाती होते हैं (सामान्यतया, इस बिंदु को एक नियमित बहुभुज का केंद्र कहा जाता है), तो \(H\) खुदे हुए वृत्त का केंद्र होता है। आइए बिंदु \(H\) से आधार की भुजाओं पर लंब बनाएं: \(HK_1, HK_2\), आदि। ये अंकित वृत्त की त्रिज्याएँ हैं (परिभाषा के अनुसार)। फिर, टीटीपी के अनुसार (\(PH\) समतल पर लंबवत है, \(HK_1, HK_2\), आदि प्रक्षेपण हैं, पक्षों के लंबवत) तिरछा \(PK_1, PK_2\), आदि। \(A_1A_2, A_2A_3\), आदि भुजाओं के लंबवत। क्रमश। तो, परिभाषा के अनुसार \(\कोण PK_1H, \कोण PK_2H\)पार्श्व फलकों और आधार के बीच के कोण के बराबर। क्योंकि त्रिभुज \(PK_1H, PK_2H, ...\) बराबर हैं (दोनों तरफ आयताकार के रूप में), तो कोण \(\कोण PK_1H, \कोण PK_2H, ...\)बराबर हैं.

5) आइए हम साबित करें कि \((d)\) का तात्पर्य \((b)\) है।

चौथे बिंदु के समान, त्रिकोण \(PK_1H, PK_2H, ...\) बराबर हैं (पैर के साथ आयताकार और तीव्र कोण के रूप में), जिसका अर्थ है कि खंड \(HK_1=HK_2=...=HK_n\) हैं बराबर। इसका मतलब है, परिभाषा के अनुसार, \(H\) आधार में अंकित वृत्त का केंद्र है। लेकिन क्योंकि नियमित बहुभुजों के लिए, उत्कीर्ण और परिबद्ध वृत्तों के केंद्र संपाती होते हैं, तो \(H\) परिबद्ध वृत्त का केंद्र होता है। Chtd.

परिणाम

एक नियमित पिरामिड के पार्श्व फलक समान समद्विबाहु त्रिभुज होते हैं।

परिभाषा

किसी नियमित पिरामिड के शीर्ष से खींची गई पार्श्व सतह की ऊँचाई कहलाती है एपोटेम.
एक नियमित पिरामिड के सभी पार्श्व चेहरों के एपोथेम एक दूसरे के बराबर होते हैं और मध्यिका और समद्विभाजक भी होते हैं।

महत्वपूर्ण नोट्स

1. एक नियमित त्रिभुजाकार पिरामिड की ऊँचाई आधार की ऊँचाइयों (या समद्विभाजक, या माध्यिका) के प्रतिच्छेदन बिंदु पर पड़ती है (आधार एक नियमित त्रिभुज है)।

2. एक नियमित चतुर्भुज पिरामिड की ऊंचाई आधार के विकर्णों के प्रतिच्छेदन बिंदु पर पड़ती है (आधार एक वर्ग है)।

3. एक नियमित षट्कोणीय पिरामिड की ऊंचाई आधार के विकर्णों के प्रतिच्छेदन बिंदु पर पड़ती है (आधार एक नियमित षट्भुज है)।

4. पिरामिड की ऊंचाई आधार पर स्थित किसी भी सीधी रेखा के लंबवत होती है।

परिभाषा

पिरामिड कहा जाता है आयताकार, यदि इसका एक पार्श्व किनारा आधार के तल पर लंबवत है।


महत्वपूर्ण नोट्स

1. एक आयताकार पिरामिड में, आधार का लंबवत किनारा पिरामिड की ऊंचाई है। अर्थात्, \(SR\) ऊँचाई है।

2. क्योंकि \(SR\) आधार से किसी भी रेखा पर लंबवत है \(\त्रिकोण एसआरएम, \त्रिकोण एसआरपी\)– समकोण त्रिभुज.

3. त्रिकोण \(\त्रिभुज SRN, \त्रिकोण SRK\)- आयताकार भी.
अर्थात् इस किनारे से बना कोई भी त्रिभुज और आधार पर स्थित इस किनारे के शीर्ष से निकलने वाला विकर्ण आयताकार होगा।

\[(\बड़ा(\पाठ(पिरामिड का आयतन और सतह क्षेत्र)))\]

प्रमेय

पिरामिड का आयतन आधार के क्षेत्रफल और पिरामिड की ऊंचाई के गुणनफल के एक तिहाई के बराबर है: \

नतीजे

मान लीजिए \(a\) आधार की भुजा है, \(h\) पिरामिड की ऊंचाई है।

1. एक नियमित त्रिभुजाकार पिरामिड का आयतन है \(V_(\text(समकोण त्रिभुज.pir.))=\dfrac(\sqrt3)(12)a^2h\),

2. एक नियमित चतुर्भुज पिरामिड का आयतन है \(V_(\text(right.four.pir.))=\dfrac13a^2h\).

3. एक नियमित षट्कोणीय पिरामिड का आयतन होता है \(V_(\text(right.six.pir.))=\dfrac(\sqrt3)(2)a^2h\).

4. एक नियमित चतुष्फलक का आयतन होता है \(V_(\text(right tetr.))=\dfrac(\sqrt3)(12)a^3\).

प्रमेय

एक नियमित पिरामिड की पार्श्व सतह का क्षेत्रफल आधार और एपोथेम की परिधि के आधे उत्पाद के बराबर होता है।

\[(\बड़ा(\पाठ(फ्रस्टम)))\]

परिभाषा

एक मनमाना पिरामिड \(PA_1A_2A_3...A_n\) पर विचार करें। आइए हम किसी बिंदु पर पड़े बिंदु को देखें पार्श्व पसलीपिरामिड, तल पिरामिड के आधार के समानांतर है। यह समतल पिरामिड को दो पॉलीहेड्रा में विभाजित करेगा, जिनमें से एक पिरामिड (\(PB_1B_2...B_n\)) है, और दूसरे को पिरामिड कहा जाता है छोटा पिरामिड(\(A_1A_2...A_nB_1B_2...B_n\) ).


काटे गए पिरामिड के दो आधार हैं - बहुभुज \(A_1A_2...A_n\) और \(B_1B_2...B_n\) जो एक दूसरे के समान हैं।

एक काटे गए पिरामिड की ऊंचाई ऊपरी आधार के किसी बिंदु से निचले आधार के तल तक खींची गई एक लंबवत रेखा है।

महत्वपूर्ण नोट्स

1. काटे गए पिरामिड के सभी पार्श्व फलक समलम्ब चतुर्भुज हैं।

2. एक नियमित रूप से काटे गए पिरामिड (अर्थात, एक नियमित पिरामिड के क्रॉस-सेक्शन द्वारा प्राप्त पिरामिड) के आधारों के केंद्रों को जोड़ने वाला खंड ऊंचाई है।