Una pirámide con un triángulo en su base. Conceptos básicos de geometría: una pirámide regular es

Definición

Pirámide es un poliedro compuesto por un polígono \(A_1A_2...A_n\) y \(n\) triángulos con un vértice común \(P\) (que no se encuentra en el plano del polígono) y lados opuestos a él, coincidiendo con el lados del polígono.
Designación: \(PA_1A_2...A_n\) .
Ejemplo: pirámide pentagonal \(PA_1A_2A_3A_4A_5\) .

Triángulos \(PA_1A_2, \PA_2A_3\), etc. son llamados caras laterales pirámides, segmentos \(PA_1, PA_2\), etc. – costillas laterales, polígono \(A_1A_2A_3A_4A_5\) – base, punto \(P\) – arriba.

Altura Las pirámides son una perpendicular que desciende desde la cima de la pirámide hasta el plano de la base.

Una pirámide con un triángulo en su base se llama tetraedro.

La pirámide se llama correcto, si su base es un polígono regular y se cumple una de las siguientes condiciones:

\((a)\) costillas laterales las pirámides son iguales;

\((b)\) la altura de la pirámide pasa por el centro del círculo circunscrito cerca de la base;

\((c)\) las nervaduras laterales están inclinadas con respecto al plano de la base en el mismo ángulo.

\((d)\) caras laterales inclinado al plano de la base en el mismo ángulo.

tetraedro regular Es una pirámide triangular, todas cuyas caras son triángulos equiláteros iguales.

Teorema

Las condiciones \((a), (b), (c), (d)\) son equivalentes.

Prueba

Encontremos la altura de la pirámide \(PH\) . Sea \(\alpha\) el plano de la base de la pirámide.


1) Demostremos que \((a)\) implica \((b)\) . Sea \(PA_1=PA_2=PA_3=...=PA_n\) .

Porque \(PH\perp \alpha\), entonces \(PH\) es perpendicular a cualquier línea que se encuentre en este plano, lo que significa que los triángulos son rectángulos. Esto significa que estos triángulos son iguales en el cateto común \(PH\) y la hipotenusa \(PA_1=PA_2=PA_3=...=PA_n\) . Esto significa \(A_1H=A_2H=...=A_nH\) . Esto significa que los puntos \(A_1, A_2, ..., A_n\) están a la misma distancia del punto \(H\), por lo tanto, se encuentran en el mismo círculo con el radio \(A_1H\). Este círculo, por definición, está circunscrito al polígono \(A_1A_2...A_n\) .

2) Demostremos que \((b)\) implica \((c)\) .

\(PA_1H, PA_2H, PA_3H,..., PA_nH\) rectangulares e iguales sobre dos patas. Esto significa que sus ángulos también son iguales, por lo tanto, \(\ángulo PA_1H=\ángulo PA_2H=...=\ángulo PA_nH\).

3) Demostremos que \((c)\) implica \((a)\) .

Similar al primer punto, los triángulos \(PA_1H, PA_2H, PA_3H,..., PA_nH\) rectangular y a lo largo de la pierna y esquina filosa. Esto significa que sus hipotenusas también son iguales, es decir, \(PA_1=PA_2=PA_3=...=PA_n\) .

4) Demostremos que de \((b)\) se sigue \((d)\) .

Porque en un polígono regular coinciden los centros de los círculos circunscritos e inscritos (en general, este punto se llama centro de un polígono regular), entonces \(H\) es el centro del círculo inscrito. Dibujemos perpendiculares desde el punto \(H\) a los lados de la base: \(HK_1, HK_2\), etc. Estos son los radios del círculo inscrito (por definición). Entonces, según el TTP (\(PH\) es una perpendicular al plano, \(HK_1, HK_2\), etc. son proyecciones, perpendicular a los lados) oblicuo \(PK_1, PK_2\), etc. perpendicular a los lados \(A_1A_2, A_2A_3\), etc. respectivamente. Entonces, por definición \(\ángulo PK_1H, \ángulo PK_2H\) iguales a los ángulos entre las caras laterales y la base. Porque triángulos \(PK_1H, PK_2H, ...\) son iguales (como rectangulares en dos lados), entonces los ángulos \(\ángulo PK_1H, \ángulo PK_2H, ...\) son iguales.

5) Demostremos que \((d)\) implica \((b)\) .

Similar al cuarto punto, los triángulos \(PK_1H, PK_2H, ...\) son iguales (como rectangulares a lo largo del cateto y ángulo agudo), lo que significa que los segmentos \(HK_1=HK_2=...=HK_n\) son igual. Esto significa, por definición, \(H\) es el centro de un círculo inscrito en la base. Pero porque Para polígonos regulares, los centros de los círculos inscritos y circunscritos coinciden, entonces \(H\) es el centro del círculo circunscrito. Chtd.

Consecuencia

Las caras laterales de una pirámide regular son triángulos isósceles iguales.

Definición

La altura de la cara lateral de una pirámide regular trazada desde su vértice se llama apotema.
Las apotemas de todas las caras laterales de una pirámide regular son iguales entre sí y también son medianas y bisectrices.

Notas importantes

1. La altura es correcta Pirámide triangular cae en el punto de intersección de las altitudes (o bisectrices, o medianas) de la base (la base es un triángulo regular).

2. La altura de una pirámide cuadrangular regular cae en el punto de intersección de las diagonales de la base (la base es un cuadrado).

3. La altura de una pirámide hexagonal regular cae en el punto de intersección de las diagonales de la base (la base es un hexágono regular).

4. La altura de la pirámide es perpendicular a cualquier línea recta que se encuentre en la base.

Definición

La pirámide se llama rectangular, si uno de sus bordes laterales es perpendicular al plano de la base.


Notas importantes

1. En una pirámide rectangular, el borde perpendicular a la base es la altura de la pirámide. Es decir, \(SR\) es la altura.

2. Porque \(SR\) es perpendicular a cualquier línea desde la base, entonces \(\triángulo SRM, \triángulo SRP\)– triángulos rectángulos.

3. Triángulos \(\triángulo SRN, \triángulo SRK\)- también rectangular.
Es decir, cualquier triángulo formado por esta arista y la diagonal que sale del vértice de esta arista situada en la base será rectangular.

\[(\Large(\text(Volumen y superficie de la pirámide)))\]

Teorema

El volumen de la pirámide es igual a un tercio del producto del área de la base por la altura de la pirámide: \

Consecuencias

Sea \(a\) el lado de la base, \(h\) la altura de la pirámide.

1. El volumen de una pirámide triangular regular es \(V_(\text(triángulo rectángulo.pir.))=\dfrac(\sqrt3)(12)a^2h\),

2. El volumen de una pirámide cuadrangular regular es \(V_(\text(right.four.pir.))=\dfrac13a^2h\).

3. El volumen de una pirámide hexagonal regular es \(V_(\text(right.six.pir.))=\dfrac(\sqrt3)(2)a^2h\).

4. El volumen de un tetraedro regular es \(V_(\text(tetr. derecha))=\dfrac(\sqrt3)(12)a^3\).

Teorema

El área de la superficie lateral de una pirámide regular es igual a la mitad del producto del perímetro de la base por la apotema.

\[(\Grande(\text(Frustum)))\]

Definición

Considere una pirámide arbitraria \(PA_1A_2A_3...A_n\) . Dibujemos un plano paralelo a la base de la pirámide que pase por un cierto punto que se encuentra en el borde lateral de la pirámide. Este plano dividirá la pirámide en dos poliedros, uno de los cuales es una pirámide (\(PB_1B_2...B_n\)), y el otro se llama pirámide truncada(\(A_1A_2...A_nB_1B_2...B_n\)).


La pirámide truncada tiene dos bases: los polígonos \(A_1A_2...A_n\) y \(B_1B_2...B_n\) que son similares entre sí.

La altura de una pirámide truncada es una perpendicular trazada desde algún punto de la base superior al plano de la base inferior.

Notas importantes

1. Todas las caras laterales de una pirámide truncada son trapecios.

2. El segmento que conecta los centros de las bases de una pirámide truncada regular (es decir, una pirámide obtenida por sección transversal de una pirámide regular) es la altura.


Definición. borde lateral- este es un triángulo en el que un ángulo se encuentra en la cima de la pirámide y el lado opuesto coincide con el lado de la base (polígono).

Definición. costillas laterales- estos son los lados comunes de las caras laterales. Una pirámide tiene tantas aristas como ángulos de un polígono.

Definición. altura de la pirámide- Esta es una perpendicular que baja desde la cima hasta la base de la pirámide.

Definición. Apotema- Esta es una perpendicular a la cara lateral de la pirámide, bajada desde la parte superior de la pirámide hasta el lado de la base.

Definición. sección diagonal- esta es una sección de una pirámide por un plano que pasa por la cima de la pirámide y la diagonal de la base.

Definición. Pirámide correcta Es una pirámide en la que la base es un polígono regular y la altura desciende hasta el centro de la base.


Volumen y superficie de la pirámide.

Fórmula. Volumen de la pirámide a través del área de la base y la altura:


Propiedades de la pirámide

Si todos los bordes laterales son iguales, entonces se puede dibujar un círculo alrededor de la base de la pirámide y el centro de la base coincide con el centro del círculo. Además, una perpendicular caída desde arriba pasa por el centro de la base (círculo).

Si todos los bordes laterales son iguales, entonces están inclinados con respecto al plano de la base en los mismos ángulos.

Las nervaduras laterales son iguales cuando se forman con el plano de la base. ángulos iguales o si se puede describir un círculo alrededor de la base de la pirámide.

Si las caras laterales están inclinadas con respecto al plano de la base en el mismo ángulo, entonces se puede inscribir un círculo en la base de la pirámide y la cima de la pirámide se proyecta hacia su centro.

Si las caras laterales están inclinadas con respecto al plano de la base en el mismo ángulo, entonces las apotemas de las caras laterales son iguales.


Propiedades de una pirámide regular

1. La cima de la pirámide está equidistante de todos los ángulos de la base.

2. Todos los bordes laterales son iguales.

3. Todas las nervaduras laterales están inclinadas en ángulos iguales con respecto a la base.

4. Las apotemas de todas las caras laterales son iguales.

5. Las áreas de todas las caras laterales son iguales.

6. Todas las caras tienen los mismos ángulos diédricos (planos).

7. Se puede describir una esfera alrededor de la pirámide. El centro de la esfera circunscrita será el punto de intersección de las perpendiculares que pasan por el medio de las aristas.

8. Puedes encajar una esfera en una pirámide. El centro de la esfera inscrita será el punto de intersección de las bisectrices que emanan del ángulo entre el borde y la base.

9. Si el centro de la esfera inscrita coincide con el centro de la esfera circunscrita, entonces la suma de los ángulos planos en el vértice es igual a π o viceversa, un ángulo es igual a π/n, donde n es el número de ángulos en la base de la pirámide.


La conexión entre la pirámide y la esfera.

Se puede describir una esfera alrededor de una pirámide cuando en la base de la pirámide hay un poliedro alrededor del cual se puede describir un círculo (condición necesaria y suficiente). El centro de la esfera será el punto de intersección de los planos que pasan perpendicularmente por los puntos medios de los bordes laterales de la pirámide.

Siempre es posible describir una esfera alrededor de cualquier pirámide triangular o regular.

Una esfera puede inscribirse en una pirámide si los planos bisectores de los ángulos diédricos internos de la pirámide se cruzan en un punto (condición necesaria y suficiente). Este punto será el centro de la esfera.


Conexión de una pirámide con un cono.

Se dice que un cono está inscrito en una pirámide si sus vértices coinciden y la base del cono está inscrita en la base de la pirámide.

Un cono puede estar inscrito en una pirámide si las apotemas de la pirámide son iguales entre sí.

Se dice que un cono está circunscrito a una pirámide si sus vértices coinciden y la base del cono está circunscrita a la base de la pirámide.

Se puede describir un cono alrededor de una pirámide si todos los bordes laterales de la pirámide son iguales entre sí.


Relación entre una pirámide y un cilindro.

Una pirámide se dice inscrita en un cilindro si la cima de la pirámide se encuentra en una base del cilindro y la base de la pirámide está inscrita en otra base del cilindro.

Se puede describir un cilindro alrededor de una pirámide si se puede describir un círculo alrededor de la base de la pirámide.


Definición. Pirámide truncada (prisma piramidal) es un poliedro que se ubica entre la base de la pirámide y el plano de sección paralelo a la base. Así, la pirámide tiene una base grande y una base más pequeña que es similar a la más grande. Las caras laterales son trapezoidales.

Definición. Pirámide triangular (tetraedro) Es una pirámide en la que tres caras y la base son triángulos arbitrarios.

Un tetraedro tiene cuatro caras, cuatro vértices y seis aristas, donde dos aristas cualesquiera no tienen vértices comunes pero no se tocan.

Cada vértice consta de tres caras y aristas que forman ángulo triangular.

El segmento que une el vértice de un tetraedro con el centro de la cara opuesta se llama mediana del tetraedro(GM).

bimediana llamado segmento que conecta los puntos medios de bordes opuestos que no se tocan (KL).

Todas las bimedianas y medianas de un tetraedro se cruzan en un punto (S). En este caso, las bimedianas se dividen por la mitad y las medianas se dividen en una proporción de 3:1 comenzando desde arriba.

Definición. Pirámide inclinada Es una pirámide en la que una de sus aristas forma un ángulo obtuso (β) con la base.

Definición. pirámide rectangular Es una pirámide en la que una de las caras laterales es perpendicular a la base.

Definición. Pirámide de ángulo agudo- una pirámide en la que la apotema mide más de la mitad de la longitud del lado de la base.

Definición. pirámide obtusa- una pirámide en la que la apotema mide menos de la mitad de la longitud del lado de la base.

Definición. tetraedro regular- un tetraedro en el que las cuatro caras son triángulos equiláteros. Es uno de los cinco polígonos regulares. En un tetraedro regular, todos los ángulos diédricos (entre caras) y triédricos (en el vértice) son iguales.

Definición. tetraedro rectangular es un tetraedro con un ángulo recto entre tres aristas en el vértice (las aristas son perpendiculares). Se forman tres caras ángulo triangular rectangular y las caras son triángulos rectángulos y la base es un triángulo arbitrario. La apotema de cualquier cara es igual a la mitad del lado de la base sobre el que cae la apotema.

Definición. tetraedro isoédrico Se llama tetraedro cuyas caras laterales son iguales entre sí y la base es un triángulo regular. Tal tetraedro tiene caras que son triángulos isósceles.

Definición. tetraedro ortocéntrico Se llama tetraedro en el que todas las alturas (perpendiculares) que descienden desde la cima hasta la cara opuesta se cruzan en un punto.

Definición. pirámide estelar llamado poliedro cuya base es una estrella.

Definición. bipirámide- un poliedro que consta de dos pirámides diferentes (las pirámides también se pueden cortar), que tienen una base común y los vértices se encuentran en lados opuestos del plano base.

Una figura tridimensional que suele aparecer en los problemas geométricos es la pirámide. La más simple de todas las figuras de esta clase es la triangular. En este artículo analizaremos en detalle las fórmulas básicas y propiedades del correcto.

Ideas geométricas sobre la figura.

Antes de pasar a considerar las propiedades de una pirámide triangular regular, echemos un vistazo más de cerca a qué tipo de figura estamos hablando.

Supongamos que existe un triángulo arbitrario en el espacio tridimensional. Seleccionemos cualquier punto de este espacio que no se encuentre en el plano del triángulo y conectémoslo con los tres vértices del triángulo. Tenemos una pirámide triangular.

Consta de 4 lados, todos los cuales son triángulos. Los puntos donde se encuentran tres caras se llaman vértices. La figura también tiene cuatro de ellos. Las líneas de intersección de dos caras son aristas. La pirámide en cuestión tiene 6 aristas. La siguiente figura muestra un ejemplo de esta figura.

Como la figura está formada por cuatro lados, también se le llama tetraedro.

Pirámide correcta

Fue discutido arriba figura arbitraria con base triangular. Ahora supongamos que dibujamos un segmento perpendicular desde la cima de la pirámide hasta su base. Este segmento se llama altura. Evidentemente, puedes dibujar 4 alturas diferentes para la figura. Si la altura cruza la base triangular en el centro geométrico, entonces dicha pirámide se llama recta.

Una pirámide recta, cuya base es un triángulo equilátero, se llama regular. Para ella, los tres triángulos que se forman superficie lateral las figuras son isósceles e iguales entre sí. Un caso especial de una pirámide regular es la situación en la que los cuatro lados son triángulos equiláteros idénticos.

Consideremos las propiedades de una pirámide triangular regular y demos las fórmulas correspondientes para calcular sus parámetros.

Lado base, altura, borde lateral y apotema.

Dos cualesquiera de los parámetros enumerados determinan de forma única las dos características restantes. Presentemos fórmulas que relacionen estas cantidades.

Supongamos que el lado de la base de una pirámide triangular regular es a. La longitud de su borde lateral es b. ¿Cuál será la altura de una pirámide triangular regular y su apotema?

Para la altura h obtenemos la expresión:

Esta fórmula se deriva del teorema de Pitágoras, según el cual el borde lateral, la altura y 2/3 de la altura de la base son.

La apotema de una pirámide es la altura de cualquier triángulo lateral. La longitud de la apotema a b es igual a:

a b = √(b 2 - a 2 /4)

De estas fórmulas se desprende claramente que cualquiera que sea el lado de la base de una pirámide regular triangular y la longitud de su borde lateral, la apotema siempre será mayor que la altura de la pirámide.

Las dos fórmulas presentadas contienen las cuatro características lineales de la figura en cuestión. Por lo tanto, dados los dos conocidos, puedes encontrar el resto resolviendo el sistema de igualdades escritas.

Volumen de la figura

Para absolutamente cualquier pirámide (incluida una inclinada), el valor del volumen de espacio limitado por ella se puede determinar conociendo la altura de la figura y el área de su base. La fórmula correspondiente es:

Aplicando esta expresión a la figura en cuestión, obtenemos la siguiente fórmula:

Donde la altura de una pirámide triangular regular es h y su lado de la base es a.

No es difícil obtener una fórmula para el volumen de un tetraedro en el que todos los lados son iguales y representan triángulos equiláteros. En este caso, el volumen de la figura está determinado por la fórmula:

Es decir, está determinada únicamente por la longitud del lado a.

Área de superficie

Sigamos considerando las propiedades de una pirámide triangular regular. El área total de todas las caras de una figura se llama área de superficie. Esto último puede estudiarse convenientemente considerando el desarrollo correspondiente. La siguiente figura muestra cómo se ve el desarrollo de una pirámide triangular regular.

Supongamos que conocemos la altura h y el lado de la base a de la figura. Entonces el área de su base será igual a:

Todo escolar puede obtener esta expresión si recuerda cómo encontrar el área de un triángulo y además tiene en cuenta que la altura triángulo equilátero también es bisectriz y mediana.

El área de la superficie lateral formada por tres triángulos isósceles idénticos es:

S b = 3/2*√(a 2 /12+h 2)*a

Esta igualdad se deriva de la expresión de la apotema de la pirámide en términos de la altura y longitud de la base.

La superficie total de la figura es:

S = S o + S b = √3/4*a 2 + 3/2*√(a 2 /12+h 2)*a

Tenga en cuenta que para un tetraedro en el que los cuatro lados son triángulos equiláteros idénticos, el área S será igual a:

Propiedades de una pirámide triangular truncada regular

Si la parte superior de la pirámide triangular considerada se corta con un plano paralelo a la base, la parte inferior restante se llamará pirámide truncada.

En el caso de una base triangular, el resultado del método de corte descrito es un nuevo triángulo, que también es equilátero, pero tiene una longitud de lado más corta que el lado de la base. A continuación se muestra una pirámide triangular truncada.

Vemos que esta cifra ya está limitada a dos. bases triangulares y tres trapecios isósceles.

Supongamos que la altura de la figura resultante es igual a h, las longitudes de los lados de las bases inferior y superior son a 1 y a 2, respectivamente, y la apotema (altura del trapezoide) es igual a a b. Entonces el área de superficie de la pirámide truncada se puede calcular mediante la fórmula:

S = 3/2*(a 1 +a 2)*a b + √3/4*(a 1 2 + a 2 2)

Aquí el primer término es el área de la superficie lateral, el segundo término es el área de las bases triangulares.

El volumen de la figura se calcula de la siguiente manera:

V = √3/12*h*(a 1 2 + a 2 2 + a 1 *a 2)

Para determinar inequívocamente las características de una pirámide truncada, es necesario conocer sus tres parámetros, como lo demuestran las fórmulas dadas.

Este vídeo tutorial ayudará a los usuarios a tener una idea del tema Pirámide. Pirámide correcta. En esta lección nos familiarizaremos con el concepto de pirámide y le daremos una definición. Veamos que es pirámide regular y que propiedades tiene. Luego demostramos el teorema sobre la superficie lateral de una pirámide regular.

En esta lección nos familiarizaremos con el concepto de pirámide y le daremos una definición.

Considere un polígono Un 1 Un 2...Un, que se encuentra en el plano α, y el punto PAG, que no se encuentra en el plano α (Fig. 1). Conectemos los puntos PAG con picos Un 1, Un 2, Un 3, … Un. Obtenemos norte triangulos: Un 1 Un 2 R, Un 2 Un 3 R etcétera.

Definición. Poliedro RA 1 A 2 ...A n, compuestos de norte-cuadrado Un 1 Un 2...Un Y norte triangulos AR 1 A 2, AR 2 A 3ra norte un norte-1 se llama norte-pirámide de carbón. Arroz. 1.

Arroz. 1

Considere una pirámide cuadrangular PABCD(Figura 2).

R- la cima de la pirámide.

A B C D- la base de la pirámide.

REAL ACADEMIA DE BELLAS ARTES- costilla lateral.

AB- nervadura base.

desde el punto R dejemos caer la perpendicular enfermera registrada al plano base A B C D. La perpendicular dibujada es la altura de la pirámide.

Arroz. 2

Superficie completa La pirámide consta de una superficie lateral, es decir, el área de todas las caras laterales y el área de la base:

S completo = S lateral + S principal

Una pirámide se dice correcta si:

  • su base es un polígono regular;
  • el segmento que conecta la cima de la pirámide con el centro de la base es su altura.

Explicación utilizando el ejemplo de una pirámide cuadrangular regular.

Considere una pirámide cuadrangular regular. PABCD(Fig. 3).

R- la cima de la pirámide. Base de la pirámide A B C D- un cuadrilátero regular, es decir, un cuadrado. Punto ACERCA DE, el punto de intersección de las diagonales, es el centro del cuadrado. Medio, RO es la altura de la pirámide.

Arroz. 3

Explicación: en lo correcto norte En un triángulo coinciden el centro del círculo inscrito y el centro del círculo circunstante. Este centro se llama centro del polígono. A veces dicen que el vértice se proyecta hacia el centro.

La altura de la cara lateral de una pirámide regular trazada desde su vértice se llama apotema y es designado Ja.

1. todas las aristas laterales de una pirámide regular son iguales;

2. Las caras laterales son triángulos isósceles iguales.

Demostraremos estas propiedades usando el ejemplo de una pirámide cuadrangular regular.

Dado: PABCD- pirámide cuadrangular regular,

A B C D- cuadrado,

RO- altura de la pirámide.

Probar:

1. RA = PB = RS = PD

2.∆ABP = ∆BCP =∆CDP =∆DAP Ver Fig. 4.

Arroz. 4

Prueba.

RO- altura de la pirámide. Es decir, recto RO perpendicular al plano A B C, y por lo tanto directo JSC, VO, SO Y HACER acostado en él. entonces triangulos ROA, ROV, ROS, VARILLA- rectangular.

Considere un cuadrado A B C D. De las propiedades de un cuadrado se deduce que AO = VO = CO = HACER.

Entonces los triángulos rectángulos ROA, ROV, ROS, VARILLA pierna RO- general y piernas JSC, VO, SO Y HACER son iguales, lo que significa que estos triángulos son iguales en dos lados. De la igualdad de triángulos se sigue la igualdad de segmentos, RA = PB = RS = PD. El punto 1 ha sido probado.

Segmentos AB Y Sol son iguales porque son lados de un mismo cuadrado, RA = PB = RS. entonces triangulos AVR Y VSR - isósceles e iguales en tres lados.

De manera similar encontramos que los triángulos ABP, VCP, CDP, DAP son isósceles e iguales, como se requiere demostrar en el párrafo 2.

El área de la superficie lateral de una pirámide regular es igual a la mitad del producto del perímetro de la base por la apotema:

Para demostrar esto, elijamos una pirámide triangular regular.

Dado: RAVS- pirámide triangular regular.

AB = BC = CA.

RO- altura.

Probar: . Ver Fig. 5.

Arroz. 5

Prueba.

RAVS- pirámide triangular regular. Eso es AB= CA = antes de Cristo. Dejar ACERCA DE- centro del triángulo A B C, Entonces RO es la altura de la pirámide. En la base de la pirámide se encuentra un triángulo equilátero A B C. Darse cuenta de .

triangulos RAV, RVS, RSA- triángulos isósceles iguales (por propiedad). Una pirámide triangular tiene tres caras laterales: RAV, RVS, RSA. Esto significa que el área de la superficie lateral de la pirámide es:

Lado S = 3S RAW

El teorema ha sido demostrado.

El radio de un círculo inscrito en la base de una pirámide cuadrangular regular es de 3 m, la altura de la pirámide es de 4 m. Encuentre el área de la superficie lateral de la pirámide.

Dado: pirámide cuadrangular regular A B C D,

A B C D- cuadrado,

r= 3 metros,

RO- altura de la pirámide,

RO= 4 metros.

Encontrar: lado S. Ver Fig. 6.

Arroz. 6

Solución.

Según el teorema demostrado, .

Primero encontremos el lado de la base. AB. Sabemos que el radio de un círculo inscrito en la base de una pirámide cuadrangular regular es de 3 m.

Entonces, m.

Encuentra el perímetro del cuadrado. A B C D con un lado de 6 m:

Considere un triángulo BCD. Dejar METRO- medio del lado corriente continua. Porque ACERCA DE- medio BD, Eso (metro).

Triángulo DPC- isósceles. METRO- medio corriente continua. Eso es, RM- mediana, y por tanto la altura en el triángulo DPC. Entonces RM- apotema de la pirámide.

RO- altura de la pirámide. Entonces, directamente RO perpendicular al plano A B C, y por lo tanto directo om, acostado en él. Encontremos la apotema RM de un triángulo rectángulo ROM.

Ahora podemos encontrar la superficie lateral de la pirámide:

Respuesta: 60 m2.

El radio del círculo circunscrito alrededor de la base de una pirámide triangular regular es igual a m y el área de la superficie lateral es de 18 m 2. Encuentra la longitud de la apotema.

Dado: ABCP- pirámide triangular regular,

AB = BC = SA,

R= metro,

Lado S = 18 m2.

Encontrar: . Ver Fig. 7.

Arroz. 7

Solución.

en un triangulo rectángulo A B C Se da el radio del círculo circunscrito. busquemos un lado AB este triángulo usando la ley de los senos.

Conociendo el lado de un triángulo regular (m), encontramos su perímetro.

Por el teorema del área de la superficie lateral de una pirámide regular, donde Ja- apotema de la pirámide. Entonces:

Respuesta: 4 metros.

Entonces, vimos qué es una pirámide, qué es una pirámide regular y demostramos el teorema sobre la superficie lateral de una pirámide regular. En la próxima lección nos familiarizaremos con la pirámide truncada.

Bibliografía

  1. Geometría. Grados 10-11: libro de texto para estudiantes de instituciones de educación general (niveles básico y especializado) / I. M. Smirnova, V. A. Smirnov. - 5ª ed., rev. y adicional - M.: Mnemosyne, 2008. - 288 p.: enfermo.
  2. Geometría. 10-11 grado: Libro de texto para educación general. Instituciones educacionales/ Sharygin I.F. - M.: Avutarda, 1999. - 208 p.: enfermo.
  3. Geometría. Grado 10: Libro de texto para instituciones de educación general con estudio profundo y especializado de matemáticas /E. V. Potoskuev, L. I. Zvalich. - 6ª ed., estereotipo. - M.: Avutarda, 008. - 233 p.: enfermo.
  1. Portal de Internet "Yaklass" ()
  2. Portal de Internet “Festival de ideas pedagógicas “Primero de Septiembre” ()
  3. Portal de Internet “Slideshare.net” ()

Tarea

  1. ¿Puede un polígono regular ser la base de una pirámide irregular?
  2. Demuestre que las aristas disjuntas de una pirámide regular son perpendiculares.
  3. Encuentre el valor del ángulo diédrico en el lado de la base de una pirámide cuadrangular regular si la apotema de la pirámide es igual al lado de su base.
  4. RAVS- pirámide triangular regular. Construye el ángulo lineal del ángulo diédrico en la base de la pirámide.

Una pirámide triangular es una pirámide que tiene un triángulo en su base. La altura de esta pirámide es la perpendicular que desciende desde la cima de la pirámide hasta su base.

Encontrar la altura de una pirámide

¿Cómo encontrar la altura de una pirámide? ¡Muy simple! Para encontrar la altura de cualquier pirámide triangular, puedes usar la fórmula del volumen: V = (1/3)Sh, donde S es el área de la base, V es el volumen de la pirámide, h es su altura. De esta fórmula, deriva la fórmula de la altura: para encontrar la altura de una pirámide triangular, debes multiplicar el volumen de la pirámide por 3 y luego dividir el valor resultante por el área de la base, será: h = (3V)/S. Dado que la base de una pirámide triangular es un triángulo, puedes usar la fórmula para calcular el área de un triángulo. Si conocemos: el área del triángulo S y su lado z, entonces según la fórmula del área S=(1/2)γh: h = (2S)/γ, donde h es la altura de la pirámide, γ es el borde del triángulo; el ángulo entre los lados del triángulo y los dos lados mismos, luego usando la siguiente fórmula: S = (1/2)γφsinQ, donde γ, φ son los lados del triángulo, encontramos el área del triángulo. El valor del seno del ángulo Q debe consultarse en la tabla de senos, que está disponible en Internet. A continuación, sustituimos el valor del área en la fórmula de altura: h = (2S)/γ. Si la tarea requiere calcular la altura de una pirámide triangular, entonces ya se conoce el volumen de la pirámide.

Pirámide triangular regular

Encuentre la altura de una pirámide triangular regular, es decir, una pirámide en la que todas las caras son triángulos equiláteros, conociendo el tamaño de las aristas γ. En este caso, las aristas de la pirámide son los lados de triángulos equiláteros. La altura de una pirámide triangular regular será: h = γ√(2/3), donde γ es la arista del triángulo equilátero, h es la altura de la pirámide. Si se desconoce el área de la base (S), y solo se dan la longitud de la arista (γ) y el volumen (V) del poliedro, entonces se debe reemplazar la variable necesaria en la fórmula del paso anterior. por su equivalente, que se expresa en términos de la longitud del borde. El área de un triángulo (regular) es igual a 1/4 del producto de la longitud del lado de este triángulo al cuadrado por la raíz cuadrada de 3. Sustituimos esta fórmula en lugar del área de la base en la anterior fórmula, y obtenemos la siguiente fórmula: h = 3V4/(γ 2 √3) = 12V/(γ 2 √3). El volumen de un tetraedro se puede expresar a través de la longitud de su arista, luego de la fórmula para calcular la altura de una figura, se pueden eliminar todas las variables y dejar solo el lado de la cara triangular de la figura. El volumen de dicha pirámide se puede calcular dividiendo por 12 el producto de la longitud cúbica de su cara por la raíz cuadrada de 2.

Sustituyendo esta expresión en la fórmula anterior, obtenemos la siguiente fórmula de cálculo: h = 12(γ 3 √2/12)/(γ 2 √3) = (γ 3 √2)/(γ 2 √3) = γ √(2/3) = (1/3)γ√6. También correcto prisma triangular puede inscribirse en una esfera, y conociendo sólo el radio de la esfera (R) se puede encontrar la altura del tetraedro mismo. La longitud de la arista del tetraedro es: γ = 4R/√6. Reemplazamos la variable γ con esta expresión en la fórmula anterior y obtenemos la fórmula: h = (1/3)√6(4R)/√6 = (4R)/3. La misma fórmula se puede obtener conociendo el radio (R) de un círculo inscrito en un tetraedro. En este caso, la longitud de la arista del triángulo será igual a 12 razones entre raíz cuadrada de 6 y radio. Sustituimos esta expresión en la fórmula anterior y tenemos: h = (1/3)γ√6 = (1/3)√6(12R)/√6 = 4R.

Cómo encontrar la altura de una pirámide cuadrangular regular

Para responder a la pregunta de cómo encontrar la longitud de la altura de una pirámide, necesitas saber qué es una pirámide regular. Pirámide cuadrangular Es una pirámide con un cuadrilátero en su base. Si en las condiciones del problema tenemos: el volumen (V) y el área de la base (S) de la pirámide, entonces la fórmula para calcular la altura del poliedro (h) será la siguiente: dividir el volumen multiplicado por 3 por el área S: h = (3V)/S. Dada una base cuadrada de una pirámide con un volumen dado (V) y una longitud de lado γ, reemplaza el área (S) en la fórmula anterior con el cuadrado de la longitud de lado: S = γ 2 ; H = 3V/γ2. La altura de una pirámide regular h = SO pasa exactamente por el centro del círculo que está circunscrito cerca de la base. Como la base de esta pirámide es un cuadrado, el punto O es el punto de intersección de las diagonales AD y BC. Tenemos: OC = (1/2)BC = (1/2)AB√6. A continuación estamos en triángulo rectángulo Encontramos SOC (usando el teorema de Pitágoras): SO = √(SC 2 -OC 2). Ahora ya sabes cómo encontrar la altura de una pirámide regular.