Todas las aristas de una pirámide regular. Figuras geometricas. Pirámide

Pirámide. Pirámide truncada

Pirámide es un poliedro, una de cuyas caras es un polígono ( base ), y todas las demás caras son triángulos con un vértice común ( caras laterales ) (Figura 15). La pirámide se llama correcto , si su base es un polígono regular y la cima de la pirámide se proyecta hacia el centro de la base (Fig. 16). Una pirámide triangular con todas las aristas iguales se llama tetraedro .



costilla lateral de una pirámide es el lado de la cara lateral que no pertenece a la base Altura pirámide es la distancia desde su cima hasta el plano de la base. Todas las costillas laterales pirámide regular iguales entre sí, todas las caras laterales son triángulos isósceles iguales. La altura de la cara lateral de una pirámide regular trazada desde el vértice se llama apotema . sección diagonal Se llama sección de una pirámide a un plano que pasa por dos aristas laterales que no pertenecen a la misma cara.

Superficie lateral La pirámide es la suma de las áreas de todas las caras laterales. Área superficie completa se llama suma de las áreas de todas las caras laterales y la base.

Teoremas

1. Si en una pirámide todos los bordes laterales están igualmente inclinados con respecto al plano de la base, entonces la cima de la pirámide se proyecta hacia el centro del círculo circunscrito cerca de la base.

2. Si en una pirámide todas las aristas laterales tienen longitudes iguales, luego la cima de la pirámide se proyecta hacia el centro del círculo circunscrito cerca de la base.

3. Si todas las caras de una pirámide están igualmente inclinadas con respecto al plano de la base, entonces la cima de la pirámide se proyecta hacia el centro de un círculo inscrito en la base.

Para calcular el volumen de una pirámide arbitraria, la fórmula correcta es:

Dónde V- volumen;

base S- área de la base;

h– altura de la pirámide.

Para una pirámide regular, las siguientes fórmulas son correctas:

Dónde pag– perímetro de la base;

Ja– apotema;

h- altura;

S lleno

lado S

base S- área de la base;

V– volumen de una pirámide regular.

Pirámide truncada Se llama la parte de la pirámide encerrada entre la base y un plano de corte paralelo a la base de la pirámide (Fig. 17). Pirámide truncada regular Se llama la parte de una pirámide regular encerrada entre la base y un plano cortante paralelo a la base de la pirámide.

Jardines pirámide truncada - polígonos similares. caras laterales – trapecios. Altura de una pirámide truncada es la distancia entre sus bases. Diagonal una pirámide truncada es un segmento que conecta sus vértices que no se encuentran en la misma cara. sección diagonal Es una sección de una pirámide truncada por un plano que pasa por dos aristas laterales que no pertenecen a la misma cara.


Para una pirámide truncada son válidas las siguientes fórmulas:

(4)

Dónde S 1 , S 2 – áreas de las bases superior e inferior;

S lleno- superficie total;

lado S– superficie lateral;

h- altura;

V– volumen de una pirámide truncada.

Para una pirámide truncada regular la fórmula es correcta:

Dónde pag 1 , pag 2 – perímetros de las bases;

Ja– apotema de una pirámide truncada regular.

Ejemplo 1. En una pirámide triangular regular, el ángulo diédrico en la base es de 60º. Encuentra la tangente del ángulo de inclinación del borde lateral al plano de la base.

Solución. Hagamos un dibujo (Fig. 18).


La pirámide es regular, lo que significa que en la base hay un triángulo equilátero y todas las caras laterales son triángulos isósceles iguales. El ángulo diédrico en la base es el ángulo de inclinación de la cara lateral de la pirámide con respecto al plano de la base. El ángulo lineal es el ángulo. a entre dos perpendiculares: etc. La cima de la pirámide se proyecta en el centro del triángulo (el centro del círculo circunstante y círculo inscrito del triángulo A B C). El ángulo de inclinación del borde lateral (por ejemplo SB) es el ángulo entre el propio borde y su proyección sobre el plano de la base. para la costilla SB este ángulo será el ángulo SBD. Para encontrar la tangente necesitas conocer los catetos. ENTONCES Y TRANSMISIÓN EXTERIOR.. Sea la longitud del segmento BD es igual a 3 A. Punto ACERCA DE segmento de línea BD se divide en partes: y de encontramos ENTONCES: De encontramos:

Respuesta:

Ejemplo 2. Encuentra el volumen del truncado correcto. pirámide cuadrangular, si las diagonales de sus bases son iguales a cm y cm, y su altura es 4 cm.

Solución. Para encontrar el volumen de una pirámide truncada usamos la fórmula (4). Para encontrar el área de las bases, debes encontrar los lados de los cuadrados de las bases, conociendo sus diagonales. Los lados de las bases son iguales a 2 cm y 8 cm, respectivamente. Esto significa que las áreas de las bases y Sustituyendo todos los datos en la fórmula, calculamos el volumen de la pirámide truncada:

Respuesta: 112cm3.

Ejemplo 3. Encuentre el área de la cara lateral de una pirámide truncada triangular regular, cuyos lados de las bases miden 10 cm y 4 cm, y la altura de la pirámide es de 2 cm.

Solución. Hagamos un dibujo (Fig. 19).


La cara lateral de esta pirámide es un trapezoide isósceles. Para calcular el área de un trapecio, necesitas saber la base y la altura. Las bases se dan según el estado, sólo se desconoce la altura. La encontraremos de donde A 1 mi perpendicular a un punto A 1 en el plano de la base inferior, A 1 D– perpendicular desde A 1 por C.A.. A 1 mi= 2 cm, ya que esta es la altura de la pirámide. Encontrar Delaware Hagamos un dibujo adicional que muestre la vista superior (Fig. 20). Punto ACERCA DE– proyección de los centros de las bases superior e inferior. desde (ver Fig. 20) y Por otro lado DE ACUERDO– radio inscrito en el círculo y om– radio inscrito en un círculo:

MK = DE.

Según el teorema de Pitágoras de

Área de la cara lateral:


Respuesta:

Ejemplo 4. En la base de la pirámide se encuentra un trapezoide isósceles, cuyas bases A Y b (a> b). Cada cara lateral forma un ángulo igual al plano de la base de la pirámide. j. Encuentra el área de superficie total de la pirámide.

Solución. Hagamos un dibujo (Fig. 21). Superficie total de la pirámide SABCD igual a la suma de las áreas y el área del trapezoide A B C D.

Usemos la afirmación de que si todas las caras de la pirámide están igualmente inclinadas con respecto al plano de la base, entonces el vértice se proyecta hacia el centro del círculo inscrito en la base. Punto ACERCA DE– proyección de vértice S en la base de la pirámide. Triángulo CÉSPED es la proyección ortogonal del triángulo CDS al plano de la base. Por el teorema del área de proyección ortogonal figura plana obtenemos:


De la misma manera significa Así, el problema se redujo a encontrar el área del trapezoide. A B C D. Dibujemos un trapecio A B C D por separado (Fig. 22). Punto ACERCA DE– el centro de un círculo inscrito en un trapezoide.


Dado que un círculo puede inscribirse en un trapezoide, entonces o Del teorema de Pitágoras tenemos


Definición. borde lateral- este es un triángulo en el que un ángulo se encuentra en la cima de la pirámide y el lado opuesto coincide con el lado de la base (polígono).

Definición. costillas laterales- estos son los lados comunes de las caras laterales. Una pirámide tiene tantas aristas como ángulos de un polígono.

Definición. altura de la pirámide- Esta es una perpendicular que baja desde la cima hasta la base de la pirámide.

Definición. Apotema- Esta es una perpendicular a la cara lateral de la pirámide, bajada desde la parte superior de la pirámide hasta el lado de la base.

Definición. sección diagonal- esta es una sección de una pirámide por un plano que pasa por la cima de la pirámide y la diagonal de la base.

Definición. Pirámide correcta Es una pirámide en la que la base es un polígono regular y la altura desciende hasta el centro de la base.


Volumen y superficie de la pirámide.

Fórmula. Volumen de la pirámide a través del área de la base y la altura:


Propiedades de la pirámide

Si todos los bordes laterales son iguales, entonces se puede dibujar un círculo alrededor de la base de la pirámide y el centro de la base coincide con el centro del círculo. Además, una perpendicular caída desde arriba pasa por el centro de la base (círculo).

Si todos los bordes laterales son iguales, entonces están inclinados con respecto al plano de la base en los mismos ángulos.

Las nervaduras laterales son iguales cuando se forman con el plano de la base. ángulos iguales o si se puede describir un círculo alrededor de la base de la pirámide.

Si las caras laterales están inclinadas con respecto al plano de la base en el mismo ángulo, entonces se puede inscribir un círculo en la base de la pirámide y la cima de la pirámide se proyecta en su centro.

Si las caras laterales están inclinadas con respecto al plano de la base en el mismo ángulo, entonces las apotemas de las caras laterales son iguales.


Propiedades de una pirámide regular

1. La cima de la pirámide está equidistante de todos los ángulos de la base.

2. Todos los bordes laterales son iguales.

3. Todas las nervaduras laterales están inclinadas en ángulos iguales con respecto a la base.

4. Las apotemas de todas las caras laterales son iguales.

5. Las áreas de todas las caras laterales son iguales.

6. Todas las caras tienen los mismos ángulos diédricos (planos).

7. Se puede describir una esfera alrededor de la pirámide. El centro de la esfera circunscrita será el punto de intersección de las perpendiculares que pasan por el medio de las aristas.

8. Puedes encajar una esfera en una pirámide. El centro de la esfera inscrita será el punto de intersección de las bisectrices que emanan del ángulo entre el borde y la base.

9. Si el centro de la esfera inscrita coincide con el centro de la esfera circunscrita, entonces la suma de los ángulos planos en el vértice es igual a π o viceversa, un ángulo es igual a π/n, donde n es el número de ángulos en la base de la pirámide.


La conexión entre la pirámide y la esfera.

Se puede describir una esfera alrededor de una pirámide cuando en la base de la pirámide hay un poliedro alrededor del cual se puede describir un círculo (condición necesaria y suficiente). El centro de la esfera será el punto de intersección de los planos que pasan perpendicularmente por los puntos medios de los bordes laterales de la pirámide.

Siempre se puede describir una esfera alrededor de cualquier pirámide triangular o regular.

Una esfera puede inscribirse en una pirámide si los planos bisectores de los ángulos diédricos internos de la pirámide se cruzan en un punto (condición necesaria y suficiente). Este punto será el centro de la esfera.


Conexión de una pirámide con un cono.

Se dice que un cono está inscrito en una pirámide si sus vértices coinciden y la base del cono está inscrita en la base de la pirámide.

Un cono puede estar inscrito en una pirámide si las apotemas de la pirámide son iguales entre sí.

Se dice que un cono está circunscrito a una pirámide si sus vértices coinciden y la base del cono está circunscrita a la base de la pirámide.

Se puede describir un cono alrededor de una pirámide si todos los bordes laterales de la pirámide son iguales entre sí.


Relación entre una pirámide y un cilindro.

Una pirámide se dice inscrita en un cilindro si la cima de la pirámide se encuentra en una base del cilindro y la base de la pirámide está inscrita en otra base del cilindro.

Se puede describir un cilindro alrededor de una pirámide si se puede describir un círculo alrededor de la base de la pirámide.


Definición. Pirámide truncada (prisma piramidal) es un poliedro que se ubica entre la base de la pirámide y el plano de sección paralelo a la base. Así, una pirámide tiene una base más grande y una base más pequeña que es similar a la más grande. Las caras laterales son trapezoidales.

Definición. Pirámide triangular (tetraedro) Es una pirámide en la que tres caras y la base son triángulos arbitrarios.

Un tetraedro tiene cuatro caras, cuatro vértices y seis aristas, donde dos aristas cualesquiera no tienen vértices comunes pero no se tocan.

Cada vértice consta de tres caras y aristas que forman ángulo triangular.

El segmento que une el vértice de un tetraedro con el centro de la cara opuesta se llama mediana del tetraedro(GM).

bimediana llamado segmento que conecta los puntos medios de bordes opuestos que no se tocan (KL).

Todas las bimedianas y medianas de un tetraedro se cruzan en un punto (S). En este caso, las bimedianas se dividen por la mitad y las medianas se dividen en una proporción de 3:1 comenzando desde arriba.

Definición. Pirámide inclinada Es una pirámide en la que una de sus aristas forma un ángulo obtuso (β) con la base.

Definición. pirámide rectangular Es una pirámide en la que una de las caras laterales es perpendicular a la base.

Definición. Pirámide de ángulo agudo- una pirámide en la que la apotema mide más de la mitad de la longitud del lado de la base.

Definición. pirámide obtusa- una pirámide en la que la apotema mide menos de la mitad de la longitud del lado de la base.

Definición. tetraedro regular- un tetraedro en el que las cuatro caras son triángulos equiláteros. Es uno de los cinco polígonos regulares. En un tetraedro regular, todos los ángulos diédricos (entre caras) y triédricos (en el vértice) son iguales.

Definición. tetraedro rectangular Se llama tetraedro en el que hay un ángulo recto entre tres aristas en el vértice (las aristas son perpendiculares). Se forman tres caras ángulo triangular rectangular y las caras son triángulos rectángulos y la base es un triángulo arbitrario. La apotema de cualquier cara es igual a la mitad del lado de la base sobre el que cae la apotema.

Definición. tetraedro isoédrico llamado tetraedro cuyas caras laterales son iguales entre sí, y la base es triangulo regular. Tal tetraedro tiene caras que son triángulos isósceles.

Definición. tetraedro ortocéntrico Se llama tetraedro en el que todas las alturas (perpendiculares) que descienden desde la cima hasta la cara opuesta se cruzan en un punto.

Definición. pirámide estelar llamado poliedro cuya base es una estrella.

Definición. bipirámide- un poliedro que consta de dos pirámides diferentes (las pirámides también se pueden cortar), que tienen una base común y los vértices se encuentran en lados opuestos del plano base.

Una pirámide triangular es una pirámide que tiene un triángulo en su base. La altura de esta pirámide es la perpendicular que desciende desde la cima de la pirámide hasta su base.

Encontrar la altura de una pirámide

¿Cómo encontrar la altura de una pirámide? ¡Muy simple! Para encontrar la altura de cualquier Pirámide triangular puedes usar la fórmula del volumen: V = (1/3)Sh, donde S es el área de la base, V es el volumen de la pirámide, h es su altura. De esta fórmula, deriva la fórmula de la altura: para encontrar la altura de una pirámide triangular, debes multiplicar el volumen de la pirámide por 3 y luego dividir el valor resultante por el área de la base, será: h = (3V)/S. Dado que la base de una pirámide triangular es un triángulo, puedes usar la fórmula para calcular el área de un triángulo. Si conocemos: el área del triángulo S y su lado z, entonces según la fórmula del área S=(1/2)γh: h = (2S)/γ, donde h es la altura de la pirámide, γ es el borde del triángulo; el ángulo entre los lados del triángulo y los dos lados mismos, luego usando la siguiente fórmula: S = (1/2)γφsinQ, donde γ, φ son los lados del triángulo, encontramos el área del triángulo. El valor del seno del ángulo Q debe consultarse en la tabla de senos, que está disponible en Internet. A continuación, sustituimos el valor del área en la fórmula de altura: h = (2S)/γ. Si la tarea requiere calcular la altura de una pirámide triangular, entonces ya se conoce el volumen de la pirámide.

Pirámide triangular regular

Encuentre la altura de una pirámide triangular regular, es decir, una pirámide en la que todas las caras son triángulos equiláteros, conociendo el tamaño de las aristas γ. En este caso, las aristas de la pirámide son los lados de triángulos equiláteros. La altura de una pirámide triangular regular será: h = γ√(2/3), donde γ es una arista triángulo equilátero, h es la altura de la pirámide. Si se desconoce el área de la base (S), y solo se dan la longitud de la arista (γ) y el volumen (V) del poliedro, entonces se debe reemplazar la variable necesaria en la fórmula del paso anterior. por su equivalente, que se expresa en términos de la longitud del borde. El área de un triángulo (regular) es igual a 1/4 del producto de la longitud del lado de este triángulo al cuadrado por la raíz cuadrada de 3. Sustituimos esta fórmula en lugar del área de la base en la anterior fórmula, y obtenemos la siguiente fórmula: h = 3V4/(γ 2 √3) = 12V/(γ 2 √3). El volumen de un tetraedro se puede expresar a través de la longitud de su arista, luego de la fórmula para calcular la altura de una figura, se pueden eliminar todas las variables y dejar solo el lado de la cara triangular de la figura. El volumen de dicha pirámide se puede calcular dividiendo por 12 el producto de la longitud cúbica de su cara por la raíz cuadrada de 2.

Sustituyendo esta expresión en la fórmula anterior, obtenemos la siguiente fórmula de cálculo: h = 12(γ 3 √2/12)/(γ 2 √3) = (γ 3 √2)/(γ 2 √3) = γ √(2/3) = (1/3)γ√6. También correcto prisma triangular puede inscribirse en una esfera, y conociendo sólo el radio de la esfera (R) se puede encontrar la altura del tetraedro mismo. La longitud de la arista del tetraedro es: γ = 4R/√6. Reemplazamos la variable γ con esta expresión en la fórmula anterior y obtenemos la fórmula: h = (1/3)√6(4R)/√6 = (4R)/3. La misma fórmula se puede obtener conociendo el radio (R) de un círculo inscrito en un tetraedro. En este caso, la longitud de la arista del triángulo será igual a 12 razones entre raíz cuadrada de 6 y radio. Sustituimos esta expresión en la fórmula anterior y tenemos: h = (1/3)γ√6 = (1/3)√6(12R)/√6 = 4R.

Cómo encontrar la altura de una pirámide cuadrangular regular

Para responder a la pregunta de cómo encontrar la longitud de la altura de una pirámide, necesitas saber qué es una pirámide regular. Una pirámide cuadrangular es una pirámide que tiene un cuadrilátero en su base. Si en las condiciones del problema tenemos: volumen (V) y área de la base (S) de la pirámide, entonces la fórmula para calcular la altura del poliedro (h) será la siguiente: dividir el volumen multiplicado por 3 por el área S: h = (3V)/S. Dada una base cuadrada de una pirámide con un volumen dado (V) y una longitud de lado γ, reemplace el área (S) en la fórmula anterior con el cuadrado de la longitud de lado: S = γ 2; H = 3V/γ2. La altura de una pirámide regular h = SO pasa exactamente por el centro del círculo que está circunscrito cerca de la base. Como la base de esta pirámide es un cuadrado, el punto O es el punto de intersección de las diagonales AD y BC. Tenemos: OC = (1/2)BC = (1/2)AB√6. A continuación estamos en triángulo rectángulo Encontramos SOC (usando el teorema de Pitágoras): SO = √(SC 2 -OC 2). Ahora ya sabes cómo encontrar la altura de una pirámide regular.

Seguimos considerando las tareas incluidas en el Examen Estatal Unificado de Matemáticas. Ya hemos estudiado problemas donde se da la condición y se requiere encontrar la distancia entre dos puntos dados o un ángulo.

Una pirámide es un poliedro cuya base es un polígono, el resto de caras son triángulos y tienen un vértice común.

Una pirámide regular es una pirámide en cuya base se encuentra un polígono regular y su vértice se proyecta hacia el centro de la base.

Una pirámide cuadrangular regular: la base es un cuadrado. La cima de la pirámide se proyecta en el punto de intersección de las diagonales de la base (cuadrado).


ML - apotema
∠MLO - ángulo diédrico en la base de la pirámide
∠MCO - ángulo entre el borde lateral y el plano de la base de la pirámide

En este artículo veremos problemas para resolver una pirámide regular. Necesitas encontrar algún elemento, superficie lateral, volumen, altura. Por supuesto, necesitas conocer el teorema de Pitágoras, la fórmula para el área de la superficie lateral de una pirámide y la fórmula para encontrar el volumen de una pirámide.

En el artículo "" presenta las fórmulas que son necesarias para resolver problemas en estereometría. Entonces, las tareas:

SABCD punto oh- centro de la base,S vértice, ENTONCES = 51, C.A.= 136. Encuentra el borde lateralCarolina del Sur.

EN en este caso la base es un cuadrado. Esto significa que las diagonales AC y BD son iguales, se cruzan y son bisecadas por el punto de intersección. Tenga en cuenta que en una pirámide regular la altura que cae desde su cima pasa por el centro de la base de la pirámide. Entonces SO es la altura y el triángulo.SOCrectangular. Entonces según el teorema de Pitágoras:

Cómo extraer la raíz de gran número.

Respuesta: 85

Decide por ti mismo:

En una pirámide cuadrangular regular SABCD punto oh- centro de la base, S vértice, ENTONCES = 4, C.A.= 6. Encuentra el borde lateral Carolina del Sur.

En una pirámide cuadrangular regular SABCD punto oh- centro de la base, S vértice, Carolina del Sur = 5, C.A.= 6. Encuentra la longitud del segmento. ENTONCES.

En una pirámide cuadrangular regular SABCD punto oh- centro de la base, S vértice, ENTONCES = 4, Carolina del Sur= 5. Encuentra la longitud del segmento. C.A..

SABC R- mitad de la costilla ANTES DE CRISTO., S- arriba. Se sabe que AB= 7, un S.R.= 16. Encuentra el área de la superficie lateral.

El área de la superficie lateral de una pirámide triangular regular es igual a la mitad del producto del perímetro de la base por la apotema (la apotema es la altura de la cara lateral de una pirámide regular extraída de su vértice):

O podemos decir esto: el área de la superficie lateral de la pirámide es igual a la suma tres cuadrados bordes laterales. Las caras laterales de una pirámide triangular regular son triángulos de igual área. En este caso:

Respuesta: 168

Decide por ti mismo:

En una pirámide triangular regular SABC R- mitad de la costilla ANTES DE CRISTO., S- arriba. Se sabe que AB= 1, un S.R.= 2. Calcula el área de la superficie lateral.

En una pirámide triangular regular SABC R- mitad de la costilla ANTES DE CRISTO., S- arriba. Se sabe que AB= 1, y el área de la superficie lateral es 3. Encuentra la longitud del segmento S.R..

En una pirámide triangular regular SABC l- mitad de la costilla ANTES DE CRISTO., S- arriba. Se sabe que SL= 2, y el área de la superficie lateral es 3. Encuentra la longitud del segmento AB.

En una pirámide triangular regular SABC METRO. Área de un triángulo A B C es 25, el volumen de la pirámide es 100. Encuentra la longitud del segmento EM.

La base de la pirámide es un triángulo equilátero.. Es por eso METROes el centro de la base, yEM- altura de una pirámide regularSABC. Volumen de la pirámide SABC es igual a: ver solución

En una pirámide triangular regular SABC las medianas de la base se cortan en el punto METRO. Área de un triángulo A B C es igual a 3, EM= 1. Encuentra el volumen de la pirámide.

En una pirámide triangular regular SABC las medianas de la base se cortan en el punto METRO. El volumen de la pirámide es 1, EM= 1. Encuentra el área del triángulo. A B C.

Terminemos aquí. Como puede ver, los problemas se resuelven en uno o dos pasos. En el futuro consideraremos otros problemas de esta parte, donde se dan cuerpos de revolución, ¡no te lo pierdas!

¡Te deseo éxito!

Atentamente, Alexander Krutitskikh.

P.D: Le agradecería que me hablara del sitio en las redes sociales.

Definición

Pirámide es un poliedro compuesto por un polígono \(A_1A_2...A_n\) y \(n\) triángulos con un vértice común \(P\) (que no se encuentra en el plano del polígono) y lados opuestos a él, coincidiendo con el lados del polígono.
Designación: \(PA_1A_2...A_n\) .
Ejemplo: pirámide pentagonal \(PA_1A_2A_3A_4A_5\) .

Triángulos \(PA_1A_2, \PA_2A_3\), etc. son llamados caras laterales pirámides, segmentos \(PA_1, PA_2\), etc. – costillas laterales, polígono \(A_1A_2A_3A_4A_5\) – base, punto \(P\) – arriba.

Altura Las pirámides son una perpendicular que desciende desde la cima de la pirámide hasta el plano de la base.

Una pirámide que tiene un triángulo en su base se llama tetraedro.

La pirámide se llama correcto, si su base es un polígono regular y se cumple una de las siguientes condiciones:

\((a)\) los bordes laterales de la pirámide son iguales;

\((b)\) la altura de la pirámide pasa por el centro del círculo circunscrito cerca de la base;

\((c)\) las nervaduras laterales están inclinadas con respecto al plano de la base en el mismo ángulo.

\((d)\) las caras laterales están inclinadas con respecto al plano de la base en el mismo ángulo.

tetraedro regular Es una pirámide triangular, todas cuyas caras son triángulos equiláteros iguales.

Teorema

Las condiciones \((a), (b), (c), (d)\) son equivalentes.

Prueba

Encontremos la altura de la pirámide \(PH\) . Sea \(\alpha\) el plano de la base de la pirámide.


1) Demostremos que de \((a)\) se sigue \((b)\) . Sea \(PA_1=PA_2=PA_3=...=PA_n\) .

Porque \(PH\perp \alpha\), entonces \(PH\) es perpendicular a cualquier línea que se encuentre en este plano, lo que significa que los triángulos son rectángulos. Esto significa que estos triángulos son iguales en el cateto común \(PH\) y la hipotenusa \(PA_1=PA_2=PA_3=...=PA_n\) . Esto significa \(A_1H=A_2H=...=A_nH\) . Esto significa que los puntos \(A_1, A_2, ..., A_n\) están a la misma distancia del punto \(H\), por lo tanto, se encuentran en el mismo círculo con el radio \(A_1H\). Este círculo, por definición, está circunscrito al polígono \(A_1A_2...A_n\) .

2) Demostremos que \((b)\) implica \((c)\) .

\(PA_1H, PA_2H, PA_3H,..., PA_nH\) rectangulares e iguales sobre dos patas. Esto significa que sus ángulos también son iguales, por lo tanto, \(\ángulo PA_1H=\ángulo PA_2H=...=\ángulo PA_nH\).

3) Demostremos que \((c)\) implica \((a)\) .

Similar al primer punto, los triángulos \(PA_1H, PA_2H, PA_3H,..., PA_nH\) rectangular y a lo largo de la pierna y esquina filosa. Esto significa que sus hipotenusas también son iguales, es decir, \(PA_1=PA_2=PA_3=...=PA_n\) .

4) Demostremos que \((b)\) implica \((d)\) .

Porque en un polígono regular, los centros de los círculos circunscritos e inscritos coinciden (en general, este punto se llama centro de un polígono regular), entonces \(H\) es el centro del círculo inscrito. Dibujemos perpendiculares desde el punto \(H\) a los lados de la base: \(HK_1, HK_2\), etc. Estos son los radios del círculo inscrito (por definición). Entonces, según el TTP (\(PH\) es una perpendicular al plano, \(HK_1, HK_2\), etc. son proyecciones, perpendicular a los lados) oblicuo \(PK_1, PK_2\), etc. perpendicular a los lados \(A_1A_2, A_2A_3\), etc. respectivamente. Entonces, por definición \(\ángulo PK_1H, \ángulo PK_2H\) iguales a los ángulos entre las caras laterales y la base. Porque triángulos \(PK_1H, PK_2H, ...\) son iguales (como rectangulares en dos lados), entonces los ángulos \(\ángulo PK_1H, \ángulo PK_2H, ...\) son iguales.

5) Demostremos que \((d)\) implica \((b)\) .

Similar al cuarto punto, los triángulos \(PK_1H, PK_2H, ...\) son iguales (como rectangulares a lo largo del cateto y ángulo agudo), lo que significa que los segmentos \(HK_1=HK_2=...=HK_n\) son igual. Esto significa, por definición, \(H\) es el centro de un círculo inscrito en la base. Pero porque Para polígonos regulares, los centros de los círculos inscritos y circunscritos coinciden, entonces \(H\) es el centro del círculo circunscrito. Chtd.

Consecuencia

Las caras laterales de una pirámide regular son triángulos isósceles iguales.

Definición

La altura de la cara lateral de una pirámide regular trazada desde su vértice se llama apotema.
Las apotemas de todas las caras laterales de una pirámide regular son iguales entre sí y también son medianas y bisectrices.

Notas importantes

1. La altura de una pirámide triangular regular cae en el punto de intersección de las alturas (o bisectrices o medianas) de la base (la base es un triángulo regular).

2. La altura de una pirámide cuadrangular regular cae en el punto de intersección de las diagonales de la base (la base es un cuadrado).

3. La altura de una pirámide hexagonal regular cae en el punto de intersección de las diagonales de la base (la base es un hexágono regular).

4. La altura de la pirámide es perpendicular a cualquier línea recta que se encuentre en la base.

Definición

La pirámide se llama rectangular, si uno de sus bordes laterales es perpendicular al plano de la base.


Notas importantes

1. En una pirámide rectangular, el borde perpendicular a la base es la altura de la pirámide. Es decir, \(SR\) es la altura.

2. Porque \(SR\) es perpendicular a cualquier línea desde la base, entonces \(\triángulo SRM, \triángulo SRP\)– triángulos rectángulos.

3. Triángulos \(\triángulo SRN, \triángulo SRK\)- también rectangular.
Es decir, cualquier triángulo formado por esta arista y la diagonal que sale del vértice de esta arista situada en la base será rectangular.

\[(\Large(\text(Volumen y superficie de la pirámide)))\]

Teorema

El volumen de la pirámide es igual a un tercio del producto del área de la base por la altura de la pirámide: \

Consecuencias

Sea \(a\) el lado de la base, \(h\) la altura de la pirámide.

1. El volumen de una pirámide triangular regular es \(V_(\text(triángulo rectángulo.pir.))=\dfrac(\sqrt3)(12)a^2h\),

2. El volumen de una pirámide cuadrangular regular es \(V_(\text(right.four.pir.))=\dfrac13a^2h\).

3. El volumen de una pirámide hexagonal regular es \(V_(\text(right.six.pir.))=\dfrac(\sqrt3)(2)a^2h\).

4. El volumen de un tetraedro regular es \(V_(\text(tetr. derecha))=\dfrac(\sqrt3)(12)a^3\).

Teorema

El área de la superficie lateral de una pirámide regular es igual a la mitad del producto del perímetro de la base por la apotema.

\[(\Grande(\text(Frustum)))\]

Definición

Considere una pirámide arbitraria \(PA_1A_2A_3...A_n\) . Dibujemos por algún punto tumbado costilla lateral pirámide, el plano es paralelo a la base de la pirámide. Este plano dividirá la pirámide en dos poliedros, uno de los cuales es una pirámide (\(PB_1B_2...B_n\)), y el otro se llama pirámide truncada(\(A_1A_2...A_nB_1B_2...B_n\)).


La pirámide truncada tiene dos bases: los polígonos \(A_1A_2...A_n\) y \(B_1B_2...B_n\) que son similares entre sí.

La altura de una pirámide truncada es una perpendicular trazada desde algún punto de la base superior al plano de la base inferior.

Notas importantes

1. Todas las caras laterales de una pirámide truncada son trapecios.

2. El segmento que conecta los centros de las bases de una pirámide truncada regular (es decir, una pirámide obtenida por sección transversal de una pirámide regular) es la altura.