Έχετε ξεχάσει πώς να λύσετε μια ημιτελή τετραγωνική εξίσωση; Πώς να λύσετε τετραγωνικές εξισώσεις

Πρώτο επίπεδο

Τετραγωνικές εξισώσεις. Περιεκτικός οδηγός (2019)

Στον όρο «τετραγωνική εξίσωση», η λέξη-κλειδί είναι «τετραγωνική». Αυτό σημαίνει ότι η εξίσωση πρέπει απαραίτητα να περιέχει μια μεταβλητή (το ίδιο x) στο τετράγωνο και δεν πρέπει να υπάρχουν xes στην τρίτη (ή μεγαλύτερη) δύναμη.

Η λύση πολλών εξισώσεων καταλήγει στην επίλυση δευτεροβάθμιων εξισώσεων.

Ας μάθουμε να προσδιορίζουμε ότι αυτή είναι μια τετραγωνική εξίσωση και όχι κάποια άλλη εξίσωση.

Παράδειγμα 1.

Ας απαλλαγούμε από τον παρονομαστή και ας πολλαπλασιάσουμε κάθε όρο της εξίσωσης με

Ας μετακινήσουμε τα πάντα στην αριστερή πλευρά και ας τακτοποιήσουμε τους όρους σε φθίνουσα σειρά δυνάμεων του X

Τώρα μπορούμε να το πούμε με σιγουριά δεδομένη εξίσωσηείναι τετράγωνο!

Παράδειγμα 2.

Πολλαπλασιάστε την αριστερή και τη δεξιά πλευρά με:

Αυτή η εξίσωση, αν και ήταν αρχικά σε αυτήν, δεν είναι τετραγωνική!

Παράδειγμα 3.

Ας πολλαπλασιάσουμε τα πάντα με:

Τρομακτικός; Η τέταρτη και δεύτερη μοίρα... Ωστόσο, αν κάνουμε αντικατάσταση, θα δούμε ότι έχουμε μια απλή τετραγωνική εξίσωση:

Παράδειγμα 4.

Φαίνεται να υπάρχει, αλλά ας ρίξουμε μια πιο προσεκτική ματιά. Ας μετακινήσουμε τα πάντα στην αριστερή πλευρά:

Βλέπετε, έχει μειωθεί - και τώρα είναι μια απλή γραμμική εξίσωση!

Τώρα προσπαθήστε να προσδιορίσετε μόνοι σας ποιες από τις παρακάτω εξισώσεις είναι τετραγωνικές και ποιες όχι:

Παραδείγματα:

Απαντήσεις:

  1. τετράγωνο;
  2. τετράγωνο;
  3. όχι τετράγωνο?
  4. όχι τετράγωνο?
  5. όχι τετράγωνο?
  6. τετράγωνο;
  7. όχι τετράγωνο?
  8. τετράγωνο.

Οι μαθηματικοί χωρίζουν τα πάντα υπό όρους τετραγωνικές εξισώσειςστην εμφάνιση:

  • Πλήρεις τετραγωνικές εξισώσεις- εξισώσεις στις οποίες οι συντελεστές και, όπως και ο ελεύθερος όρος c, δεν είναι ίσοι με μηδέν (όπως στο παράδειγμα). Επιπλέον, μεταξύ των πλήρεις τετραγωνικές εξισώσεις υπάρχουν δεδομένος- αυτές είναι εξισώσεις στις οποίες ο συντελεστής (η εξίσωση από το πρώτο παράδειγμα δεν είναι μόνο πλήρης, αλλά και μειωμένη!)
  • Ημιτελείς τετραγωνικές εξισώσεις- εξισώσεις στις οποίες ο συντελεστής και ή ο ελεύθερος όρος c είναι ίσοι με μηδέν:

    Είναι ελλιπείς γιατί τους λείπει κάποιο στοιχείο. Όμως η εξίσωση πρέπει πάντα να περιέχει x τετράγωνο!!! Διαφορετικά, δεν θα είναι πλέον μια δευτεροβάθμια εξίσωση, αλλά κάποια άλλη εξίσωση.

Γιατί σκέφτηκαν μια τέτοια διαίρεση; Φαίνεται ότι υπάρχει ένα Χ στο τετράγωνο, και εντάξει. Αυτή η διαίρεση καθορίζεται από τις μεθόδους λύσης. Ας δούμε το καθένα από αυτά με περισσότερες λεπτομέρειες.

Επίλυση ημιτελών τετραγωνικών εξισώσεων

Αρχικά, ας επικεντρωθούμε στην επίλυση ημιτελών τετραγωνικών εξισώσεων - είναι πολύ πιο απλές!

Υπάρχουν τύποι ημιτελών τετραγωνικών εξισώσεων:

  1. , στην εξίσωση αυτή ο συντελεστής είναι ίσος.
  2. , σε αυτή την εξίσωση ο ελεύθερος όρος είναι ίσος με.
  3. , στην εξίσωση αυτή ο συντελεστής και ο ελεύθερος όρος είναι ίσοι.

1. i. Επειδή ξέρουμε πώς να παίρνουμε την τετραγωνική ρίζα, ας εκφράσουμε από αυτήν την εξίσωση

Η έκφραση μπορεί να είναι είτε αρνητική είτε θετική. Ένας τετράγωνος αριθμός δεν μπορεί να είναι αρνητικός, γιατί όταν πολλαπλασιάζουμε δύο αρνητικούς ή δύο θετικούς αριθμούς, το αποτέλεσμα θα είναι πάντα ένας θετικός αριθμός, οπότε: αν, τότε η εξίσωση δεν έχει λύσεις.

Και αν, τότε έχουμε δύο ρίζες. Αυτοί οι τύποι δεν χρειάζεται να απομνημονεύονται. Το κύριο πράγμα είναι ότι πρέπει να γνωρίζετε και να θυμάστε πάντα ότι δεν μπορεί να είναι λιγότερο.

Ας προσπαθήσουμε να λύσουμε μερικά παραδείγματα.

Παράδειγμα 5:

Λύστε την εξίσωση

Τώρα το μόνο που μένει είναι να εξαγάγετε τη ρίζα από την αριστερή και τη δεξιά πλευρά. Μετά από όλα, θυμάστε πώς να εξαγάγετε ρίζες;

Απάντηση:

Μην ξεχνάτε ποτέ τις ρίζες με αρνητικό πρόσημο!!!

Παράδειγμα 6:

Λύστε την εξίσωση

Απάντηση:

Παράδειγμα 7:

Λύστε την εξίσωση

Ωχ! Το τετράγωνο ενός αριθμού δεν μπορεί να είναι αρνητικό, πράγμα που σημαίνει ότι η εξίσωση

χωρίς ρίζες!

Για τέτοιες εξισώσεις που δεν έχουν ρίζες, οι μαθηματικοί βρήκαν ένα ειδικό εικονίδιο - (κενό σύνολο). Και η απάντηση μπορεί να γραφτεί ως εξής:

Απάντηση:

Έτσι, αυτή η τετραγωνική εξίσωση έχει δύο ρίζες. Δεν υπάρχουν περιορισμοί εδώ, αφού δεν εξάγαμε τη ρίζα.
Παράδειγμα 8:

Λύστε την εξίσωση

Ας βγάλουμε τον κοινό παράγοντα εκτός παρενθέσεων:

Ετσι,

Αυτή η εξίσωση έχει δύο ρίζες.

Απάντηση:

Ο απλούστερος τύπος ημιτελών τετραγωνικών εξισώσεων (αν και είναι όλες απλές, σωστά;). Προφανώς, αυτή η εξίσωση έχει πάντα μόνο μία ρίζα:

Εδώ θα κάνουμε χωρίς παραδείγματα.

Επίλυση πλήρων τετραγωνικών εξισώσεων

Υπενθυμίζουμε ότι μια πλήρης τετραγωνική εξίσωση είναι μια εξίσωση της εξίσωσης μορφής όπου

Η επίλυση πλήρων τετραγωνικών εξισώσεων είναι λίγο πιο δύσκολη (λίγο) από αυτές.

Θυμάμαι, Οποιαδήποτε δευτεροβάθμια εξίσωση μπορεί να λυθεί χρησιμοποιώντας ένα διαχωριστικό! Έστω και ημιτελής.

Οι άλλες μέθοδοι θα σας βοηθήσουν να το κάνετε γρηγορότερα, αλλά εάν έχετε προβλήματα με τις δευτεροβάθμιες εξισώσεις, πρώτα κατακτήστε τη λύση χρησιμοποιώντας τη διάκριση.

1. Επίλυση δευτεροβάθμιων εξισώσεων με χρήση διαχωριστή.

Η επίλυση τετραγωνικών εξισώσεων χρησιμοποιώντας αυτή τη μέθοδο είναι πολύ απλή.

Αν, τότε η εξίσωση έχει ρίζα. Ιδιαίτερη προσοχήΚάνε ένα βήμα. Το διακριτικό () μας λέει τον αριθμό των ριζών της εξίσωσης.

  • Εάν, τότε ο τύπος στο βήμα θα μειωθεί σε. Έτσι, η εξίσωση θα έχει μόνο ρίζα.
  • Εάν, τότε δεν θα μπορέσουμε να εξαγάγουμε τη ρίζα του διακριτικού στο βήμα. Αυτό δείχνει ότι η εξίσωση δεν έχει ρίζες.

Ας επιστρέψουμε στις εξισώσεις μας και ας δούμε μερικά παραδείγματα.

Παράδειγμα 9:

Λύστε την εξίσωση

Βήμα 1παραλείπουμε.

Βήμα 2.

Βρίσκουμε τη διάκριση:

Αυτό σημαίνει ότι η εξίσωση έχει δύο ρίζες.

Βήμα 3.

Απάντηση:

Παράδειγμα 10:

Λύστε την εξίσωση

Η εξίσωση παρουσιάζεται σε τυπική μορφή, άρα Βήμα 1παραλείπουμε.

Βήμα 2.

Βρίσκουμε τη διάκριση:

Αυτό σημαίνει ότι η εξίσωση έχει μία ρίζα.

Απάντηση:

Παράδειγμα 11:

Λύστε την εξίσωση

Η εξίσωση παρουσιάζεται σε τυπική μορφή, άρα Βήμα 1παραλείπουμε.

Βήμα 2.

Βρίσκουμε τη διάκριση:

Αυτό σημαίνει ότι δεν θα μπορέσουμε να εξαγάγουμε τη ρίζα της διάκρισης. Δεν υπάρχουν ρίζες της εξίσωσης.

Τώρα ξέρουμε πώς να γράφουμε σωστά τέτοιες απαντήσεις.

Απάντηση:χωρίς ρίζες

2. Επίλυση τετραγωνικών εξισώσεων χρησιμοποιώντας το θεώρημα του Vieta.

Αν θυμάστε, υπάρχει ένας τύπος εξίσωσης που ονομάζεται μειωμένος (όταν ο συντελεστής a είναι ίσος με):

Τέτοιες εξισώσεις είναι πολύ εύκολο να λυθούν χρησιμοποιώντας το θεώρημα του Vieta:

Άθροισμα ριζών δεδομένοςη τετραγωνική εξίσωση είναι ίση και το γινόμενο των ριζών είναι ίσο.

Παράδειγμα 12:

Λύστε την εξίσωση

Αυτή η εξίσωση μπορεί να λυθεί χρησιμοποιώντας το θεώρημα του Vieta επειδή .

Το άθροισμα των ριζών της εξίσωσης είναι ίσο, δηλ. παίρνουμε την πρώτη εξίσωση:

Και το προϊόν ισούται με:

Ας συνθέσουμε και λύσουμε το σύστημα:

  • Και. Το ποσό είναι ίσο με?
  • Και. Το ποσό είναι ίσο με?
  • Και. Το ποσό είναι ίσο.

και είναι η λύση στο σύστημα:

Απάντηση: ; .

Παράδειγμα 13:

Λύστε την εξίσωση

Απάντηση:

Παράδειγμα 14:

Λύστε την εξίσωση

Δίνεται η εξίσωση που σημαίνει:

Απάντηση:

ΤΕΤΑΡΧΙΚΕΣ ΕΞΙΣΩΣΕΙΣ. ΜΕΣΟ ΕΠΙΠΕΔΟ

Τι είναι μια τετραγωνική εξίσωση;

Με άλλα λόγια, μια τετραγωνική εξίσωση είναι μια εξίσωση της μορφής, όπου - ο άγνωστος, - ορισμένοι αριθμοί, και.

Ο αριθμός ονομάζεται υψηλότερος ή πρώτος συντελεστήςτετραγωνική εξίσωση, - δεύτερος συντελεστής, ΕΝΑ - ελεύθερο μέλος.

Γιατί; Γιατί αν η εξίσωση γίνει αμέσως γραμμική, γιατί θα εξαφανιστεί.

Σε αυτή την περίπτωση, και μπορεί να είναι ίσο με μηδέν. Σε αυτή την καρέκλα η εξίσωση ονομάζεται ελλιπής. Αν όλοι οι όροι είναι στη θέση τους, δηλαδή, η εξίσωση είναι πλήρης.

Λύσεις σε διάφορους τύπους τετραγωνικών εξισώσεων

Μέθοδοι επίλυσης ημιτελών τετραγωνικών εξισώσεων:

Αρχικά, ας δούμε τις μεθόδους για την επίλυση ημιτελών τετραγωνικών εξισώσεων - είναι απλούστερες.

Μπορούμε να διακρίνουμε τους παρακάτω τύπους εξισώσεων:

Ι., στην εξίσωση αυτή ο συντελεστής και ο ελεύθερος όρος είναι ίσοι.

II. , στην εξίσωση αυτή ο συντελεστής είναι ίσος.

III. , σε αυτή την εξίσωση ο ελεύθερος όρος είναι ίσος με.

Τώρα ας δούμε τη λύση για κάθε έναν από αυτούς τους υποτύπους.

Προφανώς, αυτή η εξίσωση έχει πάντα μόνο μία ρίζα:

Ένας τετράγωνος αριθμός δεν μπορεί να είναι αρνητικός, γιατί όταν πολλαπλασιάσετε δύο αρνητικούς ή δύο θετικούς αριθμούς, το αποτέλεσμα θα είναι πάντα ένας θετικός αριθμός. Να γιατί:

αν, τότε η εξίσωση δεν έχει λύσεις.

αν έχουμε δύο ρίζες

Αυτοί οι τύποι δεν χρειάζεται να απομνημονεύονται. Το κύριο πράγμα που πρέπει να θυμάστε είναι ότι δεν μπορεί να είναι λιγότερο.

Παραδείγματα:

Λύσεις:

Απάντηση:

Μην ξεχνάτε ποτέ τις ρίζες με αρνητικό πρόσημο!

Το τετράγωνο ενός αριθμού δεν μπορεί να είναι αρνητικό, πράγμα που σημαίνει ότι η εξίσωση

χωρίς ρίζες.

Για να σημειώσουμε εν συντομία ότι ένα πρόβλημα δεν έχει λύσεις, χρησιμοποιούμε το εικονίδιο κενού συνόλου.

Απάντηση:

Άρα, αυτή η εξίσωση έχει δύο ρίζες: και.

Απάντηση:

Ας βγάλουμε τον κοινό παράγοντα εκτός παρενθέσεων:

Το γινόμενο είναι ίσο με μηδέν εάν τουλάχιστον ένας από τους παράγοντες είναι ίσος με μηδέν. Αυτό σημαίνει ότι η εξίσωση έχει λύση όταν:

Άρα, αυτή η τετραγωνική εξίσωση έχει δύο ρίζες: και.

Παράδειγμα:

Λύστε την εξίσωση.

Λύση:

Ας συνυπολογίσουμε την αριστερή πλευρά της εξίσωσης και ας βρούμε τις ρίζες:

Απάντηση:

Μέθοδοι επίλυσης πλήρων τετραγωνικών εξισώσεων:

1. Διακριτικός

Η επίλυση τετραγωνικών εξισώσεων με αυτόν τον τρόπο είναι εύκολη, το κύριο πράγμα είναι να θυμάστε την ακολουθία των ενεργειών και μερικούς τύπους. Θυμηθείτε, οποιαδήποτε δευτεροβάθμια εξίσωση μπορεί να λυθεί χρησιμοποιώντας ένα διαχωριστικό! Έστω και ημιτελής.

Προσέξατε τη ρίζα από το διακριτικό στον τύπο για τις ρίζες; Αλλά η διάκριση μπορεί να είναι αρνητική. Τι να κάνω; Πρέπει να δώσουμε ιδιαίτερη προσοχή στο βήμα 2. Ο διαχωριστής μας λέει τον αριθμό των ριζών της εξίσωσης.

  • Αν, τότε η εξίσωση έχει ρίζες:
  • Αν τότε η εξίσωση έχει πανομοιότυπες ρίζες, αλλά ουσιαστικά μια ρίζα:

    Τέτοιες ρίζες ονομάζονται διπλές ρίζες.

  • Αν, τότε δεν εξάγεται η ρίζα της διάκρισης. Αυτό δείχνει ότι η εξίσωση δεν έχει ρίζες.

Γιατί είναι δυνατοί διαφορετικοί αριθμοί ριζών; Ας στραφούμε στο γεωμετρική αίσθησητετραγωνική εξίσωση. Η γραφική παράσταση της συνάρτησης είναι παραβολή:

Σε μια ειδική περίπτωση, που είναι μια τετραγωνική εξίσωση, . Αυτό σημαίνει ότι οι ρίζες μιας τετραγωνικής εξίσωσης είναι τα σημεία τομής με τον άξονα της τετμημένης (άξονα). Μια παραβολή μπορεί να μην τέμνει καθόλου τον άξονα ή μπορεί να τον τέμνει σε ένα (όταν η κορυφή της παραβολής βρίσκεται στον άξονα) ή δύο σημεία.

Επιπλέον, ο συντελεστής είναι υπεύθυνος για την κατεύθυνση των κλάδων της παραβολής. Αν, τότε οι κλάδοι της παραβολής κατευθύνονται προς τα πάνω και αν, τότε προς τα κάτω.

Παραδείγματα:

Λύσεις:

Απάντηση:

Απάντηση: .

Απάντηση:

Αυτό σημαίνει ότι δεν υπάρχουν λύσεις.

Απάντηση: .

2. Θεώρημα Vieta

Η χρήση του θεωρήματος του Vieta είναι πολύ εύκολη: απλά πρέπει να επιλέξετε ένα ζεύγος αριθμών των οποίων το γινόμενο είναι ίσο με τον ελεύθερο όρο της εξίσωσης και το άθροισμα είναι ίσο με τον δεύτερο συντελεστή, που λαμβάνεται με το αντίθετο πρόσημο.

Είναι σημαντικό να θυμόμαστε ότι το θεώρημα του Vieta μπορεί να εφαρμοστεί μόνο σε μειωμένες τετραγωνικές εξισώσεις ().

Ας δούμε μερικά παραδείγματα:

Παράδειγμα #1:

Λύστε την εξίσωση.

Λύση:

Αυτή η εξίσωση μπορεί να λυθεί χρησιμοποιώντας το θεώρημα του Vieta επειδή . Άλλοι συντελεστές: ; .

Το άθροισμα των ριζών της εξίσωσης είναι:

Και το προϊόν ισούται με:

Ας επιλέξουμε ζεύγη αριθμών των οποίων το γινόμενο είναι ίσο και ας ελέγξουμε αν το άθροισμά τους είναι ίσο:

  • Και. Το ποσό είναι ίσο με?
  • Και. Το ποσό είναι ίσο με?
  • Και. Το ποσό είναι ίσο.

και είναι η λύση στο σύστημα:

Έτσι, και είναι οι ρίζες της εξίσωσής μας.

Απάντηση: ; .

Παράδειγμα #2:

Λύση:

Ας επιλέξουμε ζεύγη αριθμών που δίνουν το γινόμενο και, στη συνέχεια, ελέγξτε αν το άθροισμά τους είναι ίσο:

και: δίνουν συνολικά.

και: δίνουν συνολικά. Για να αποκτήσετε, αρκεί απλώς να αλλάξετε τα σημάδια των υποτιθέμενων ριζών: και, τελικά, το προϊόν.

Απάντηση:

Παράδειγμα #3:

Λύση:

Ο ελεύθερος όρος της εξίσωσης είναι αρνητικός και επομένως το γινόμενο των ριζών είναι αρνητικός αριθμός. Αυτό είναι δυνατό μόνο εάν η μία από τις ρίζες είναι αρνητική και η άλλη θετική. Επομένως το άθροισμα των ριζών είναι ίσο με διαφορές των ενοτήτων τους.

Ας επιλέξουμε τέτοια ζεύγη αριθμών που δίνουν στο γινόμενο και των οποίων η διαφορά είναι ίση με:

και: η διαφορά τους είναι ίση - δεν ταιριάζει.

και: - ακατάλληλο.

και: - ακατάλληλο.

και: - κατάλληλο. Το μόνο που μένει είναι να θυμόμαστε ότι μια από τις ρίζες είναι αρνητική. Εφόσον το άθροισμά τους πρέπει να είναι ίσο, η ρίζα με το μικρότερο συντελεστή πρέπει να είναι αρνητική: . Ελέγχουμε:

Απάντηση:

Παράδειγμα #4:

Λύστε την εξίσωση.

Λύση:

Δίνεται η εξίσωση που σημαίνει:

Ο ελεύθερος όρος είναι αρνητικός και επομένως το γινόμενο των ριζών είναι αρνητικό. Και αυτό είναι δυνατό μόνο όταν η μία ρίζα της εξίσωσης είναι αρνητική και η άλλη θετική.

Ας επιλέξουμε ζεύγη αριθμών των οποίων το γινόμενο είναι ίσο και, στη συνέχεια, προσδιορίζουμε ποιες ρίζες πρέπει να έχουν αρνητικό πρόσημο:

Προφανώς, μόνο οι ρίζες και είναι κατάλληλες για την πρώτη συνθήκη:

Απάντηση:

Παράδειγμα #5:

Λύστε την εξίσωση.

Λύση:

Δίνεται η εξίσωση που σημαίνει:

Το άθροισμα των ριζών είναι αρνητικό, που σημαίνει ότι τουλάχιστον μία από τις ρίζες είναι αρνητική. Αλλά επειδή το προϊόν τους είναι θετικό, σημαίνει ότι και οι δύο ρίζες έχουν πρόσημο μείον.

Ας επιλέξουμε ζεύγη αριθμών των οποίων το γινόμενο είναι ίσο με:

Προφανώς, οι ρίζες είναι οι αριθμοί και.

Απάντηση:

Συμφωνώ, είναι πολύ βολικό να βρίσκεις ρίζες προφορικά, αντί να μετράς αυτό το δυσάρεστο διαχωριστικό. Προσπαθήστε να χρησιμοποιείτε το θεώρημα του Vieta όσο πιο συχνά γίνεται.

Αλλά το θεώρημα του Vieta είναι απαραίτητο για να διευκολυνθεί και να επιταχυνθεί η εύρεση των ριζών. Για να επωφεληθείτε από τη χρήση του, πρέπει να φέρετε τις ενέργειες σε αυτοματοποίηση. Και για αυτό, λύστε άλλα πέντε παραδείγματα. Αλλά μην εξαπατήσετε: δεν μπορείτε να χρησιμοποιήσετε διακριτικό! Μόνο το θεώρημα του Βιέτα:

Λύσεις σε εργασίες για ανεξάρτητη εργασία:

Εργασία 1. ((x)^(2))-8x+12=0

Σύμφωνα με το θεώρημα του Vieta:

Ως συνήθως, ξεκινάμε την επιλογή με το κομμάτι:

Ακατάλληλο γιατί το ποσό?

: το ποσό είναι ακριβώς αυτό που χρειάζεστε.

Απάντηση: ; .

Εργασία 2.

Και πάλι το αγαπημένο μας θεώρημα Vieta: το άθροισμα πρέπει να είναι ίσο και το γινόμενο πρέπει να είναι ίσο.

Επειδή όμως δεν πρέπει να είναι, αλλά, αλλάζουμε τα σημάδια των ριζών: και (συνολικά).

Απάντηση: ; .

Εργασία 3.

Χμ... Πού είναι αυτό;

Πρέπει να μετακινήσετε όλους τους όρους σε ένα μέρος:

Το άθροισμα των ριζών είναι ίσο με το γινόμενο.

Εντάξει, σταμάτα! Η εξίσωση δεν δίνεται. Αλλά το θεώρημα του Vieta είναι εφαρμόσιμο μόνο στις δεδομένες εξισώσεις. Άρα πρώτα πρέπει να δώσετε μια εξίσωση. Εάν δεν μπορείτε να ηγηθείτε, εγκαταλείψτε αυτήν την ιδέα και λύστε το με άλλο τρόπο (για παράδειγμα, μέσω ενός διακριτικού). Επιτρέψτε μου να σας υπενθυμίσω ότι για να δώσετε μια τετραγωνική εξίσωση σημαίνει να κάνετε τον συντελεστή που οδηγεί ίσος:

Εξαιρετική. Τότε το άθροισμα των ριζών είναι ίσο με και το γινόμενο.

Εδώ είναι τόσο εύκολο όσο το ξεφλούδισμα των αχλαδιών: τελικά, είναι πρώτος αριθμός (συγγνώμη για την ταυτολογία).

Απάντηση: ; .

Εργασία 4.

Το δωρεάν μέλος είναι αρνητικό. Τι το ιδιαίτερο έχει αυτό; Και το γεγονός είναι ότι οι ρίζες θα έχουν διαφορετικά σημάδια. Και τώρα, κατά την επιλογή, δεν ελέγχουμε το άθροισμα των ριζών, αλλά τη διαφορά στις ενότητες τους: αυτή η διαφορά είναι ίση, αλλά προϊόν.

Έτσι, οι ρίζες είναι ίσες με και, αλλά μία από αυτές είναι μείον. Το θεώρημα του Βιέτα μας λέει ότι το άθροισμα των ριζών είναι ίσο με τον δεύτερο συντελεστή με το αντίθετο πρόσημο, δηλαδή. Αυτό σημαίνει ότι η μικρότερη ρίζα θα έχει ένα μείον: και, δεδομένου ότι.

Απάντηση: ; .

Εργασία 5.

Τι πρέπει να κάνετε πρώτα; Σωστά, δώστε την εξίσωση:

Και πάλι: επιλέγουμε τους συντελεστές του αριθμού και η διαφορά τους πρέπει να είναι ίση με:

Οι ρίζες είναι ίσες με και, αλλά μία από αυτές είναι μείον. Οι οποίες; Το άθροισμά τους πρέπει να είναι ίσο, πράγμα που σημαίνει ότι το μείον θα έχει μεγαλύτερη ρίζα.

Απάντηση: ; .

Επιτρέψτε μου να συνοψίσω:
  1. Το θεώρημα του Vieta χρησιμοποιείται μόνο στις δευτεροβάθμιες εξισώσεις που δίνονται.
  2. Χρησιμοποιώντας το θεώρημα του Vieta, μπορείτε να βρείτε τις ρίζες με επιλογή, προφορικά.
  3. Αν δεν δοθεί η εξίσωση ή δεν βρεθεί εξίσωση κατάλληλο ζευγάριπολλαπλασιαστές του ελεύθερου όρου, που σημαίνει ότι δεν υπάρχουν ολόκληρες ρίζες και πρέπει να το λύσετε με άλλο τρόπο (για παράδειγμα, μέσω ενός διακριτικού).

3. Μέθοδος επιλογής πλήρους τετραγώνου

Εάν όλοι οι όροι που περιέχουν το άγνωστο αντιπροσωπεύονται με τη μορφή όρων από συντομευμένους τύπους πολλαπλασιασμού - το τετράγωνο του αθροίσματος ή της διαφοράς - τότε μετά την αντικατάσταση των μεταβλητών, η εξίσωση μπορεί να παρουσιαστεί με τη μορφή μιας ημιτελούς τετραγωνικής εξίσωσης του τύπου.

Για παράδειγμα:

Παράδειγμα 1:

Λύστε την εξίσωση: .

Λύση:

Απάντηση:

Παράδειγμα 2:

Λύστε την εξίσωση: .

Λύση:

Απάντηση:

ΣΕ γενική εικόναο μετασχηματισμός θα μοιάζει με αυτό:

Αυτό υπονοεί: .

Δεν σου θυμίζει τίποτα; Αυτό είναι κάτι που εισάγει διακρίσεις! Έτσι ακριβώς πήραμε τον τύπο διάκρισης.

ΤΕΤΑΡΧΟΜΕΝΕΣ ΕΞΙΣΩΣΕΙΣ. ΣΥΝΤΟΜΗ ΣΧΕΤΙΚΑ ΜΕ ΤΑ ΚΥΡΙΑ ΠΡΑΓΜΑΤΑ

Τετραγωνική εξίσωση- αυτή είναι μια εξίσωση της μορφής, όπου - ο άγνωστος, - οι συντελεστές της τετραγωνικής εξίσωσης, - ο ελεύθερος όρος.

Πλήρης τετραγωνική εξίσωση- μια εξίσωση στην οποία οι συντελεστές δεν είναι ίσοι με μηδέν.

Μειωμένη τετραγωνική εξίσωση- μια εξίσωση στην οποία ο συντελεστής, δηλαδή: .

Ημιτελής τετραγωνική εξίσωση- μια εξίσωση στην οποία ο συντελεστής και ή ο ελεύθερος όρος c είναι ίσοι με μηδέν:

  • αν ο συντελεστής, η εξίσωση μοιάζει με:
  • αν υπάρχει ελεύθερος όρος, η εξίσωση έχει τη μορφή:
  • αν και, η εξίσωση μοιάζει με: .

1. Αλγόριθμος επίλυσης ημιτελών τετραγωνικών εξισώσεων

1.1. Μια ημιτελής τετραγωνική εξίσωση της μορφής, όπου, :

1) Ας εκφράσουμε το άγνωστο:

2) Ελέγξτε το πρόσημο της έκφρασης:

  • αν, τότε η εξίσωση δεν έχει λύσεις,
  • αν, τότε η εξίσωση έχει δύο ρίζες.

1.2. Μια ημιτελής τετραγωνική εξίσωση της μορφής, όπου, :

1) Ας βγάλουμε τον κοινό παράγοντα εκτός παρενθέσεων: ,

2) Το γινόμενο είναι ίσο με μηδέν εάν τουλάχιστον ένας από τους παράγοντες είναι ίσος με μηδέν. Επομένως, η εξίσωση έχει δύο ρίζες:

1.3. Μια ημιτελής τετραγωνική εξίσωση της μορφής, όπου:

Αυτή η εξίσωση έχει πάντα μία μόνο ρίζα: .

2. Αλγόριθμος επίλυσης πλήρων τετραγωνικών εξισώσεων της μορφής όπου

2.1. Λύση με χρήση διακριτικού

1) Ας μειώσουμε την εξίσωση σε τυπική όψη: ,

2) Ας υπολογίσουμε τη διάκριση χρησιμοποιώντας τον τύπο: , που δείχνει τον αριθμό των ριζών της εξίσωσης:

3) Βρείτε τις ρίζες της εξίσωσης:

  • αν, τότε η εξίσωση έχει ρίζες, οι οποίες βρίσκονται από τον τύπο:
  • αν, τότε η εξίσωση έχει μια ρίζα, η οποία βρίσκεται από τον τύπο:
  • αν, τότε η εξίσωση δεν έχει ρίζες.

2.2. Λύση χρησιμοποιώντας το θεώρημα του Vieta

Το άθροισμα των ριζών της ανηγμένης δευτεροβάθμιας εξίσωσης (εξίσωση της μορφής όπου) είναι ίσο, και το γινόμενο των ριζών είναι ίσο, δηλ. , ΕΝΑ.

2.3. Λύση με τη μέθοδο επιλογής πλήρους τετραγώνου

Farafonova Natalia Igorevna

Θέμα:Ημιτελείς τετραγωνικές εξισώσεις.

Στόχοι μαθήματος:- Εισάγετε την έννοια της ημιτελούς τετραγωνικής εξίσωσης.

Μάθετε να λύνετε ημιτελείς τετραγωνικές εξισώσεις.

Στόχοι μαθήματος:- Να είναι σε θέση να προσδιορίσει τον τύπο της δευτεροβάθμιας εξίσωσης.

Λύστε ημιτελείς τετραγωνικές εξισώσεις.

Webbook:Άλγεβρα: Σχολικό βιβλίο. για την 8η τάξη. γενική εκπαίδευση ιδρύματα / Sh.Alimov, Yu. V. Sidorov, κ.λπ.

Κατά τη διάρκεια των μαθημάτων.

1. Υπενθυμίστε στους μαθητές ότι πριν λύσουν οποιαδήποτε δευτεροβάθμια εξίσωση, είναι απαραίτητο να την αναγάγουν σε τυπική μορφή. Θυμηθείτε τον ορισμό πλήρης τετραγωνική εξίσωση:τσεκούρι 2 +bx +c = 0,a ≠ 0.

Σε αυτές τις τετραγωνικές εξισώσεις, ονομάστε τους συντελεστές a, b, c:

α) 2x 2 - x + 3 = 0; β) x 2 + 4x - 1 = 0; γ) x 2 - 4 = 0; δ) 5x 2 + 3x = 0.

2. Ορίστε μια ημιτελή τετραγωνική εξίσωση:

Λέγεται η τετραγωνική εξίσωση ax 2 + bx + c = 0 ατελής, εάν τουλάχιστον ένας από τους συντελεστές, b ή c, είναι ίσος με 0. Σημειώστε ότι ο συντελεστής a ≠ 0. Από τις εξισώσεις που παρουσιάζονται παραπάνω, επιλέξτε ημιτελείς τετραγωνικές εξισώσεις.

3. Είναι πιο βολικό να παρουσιάζουμε τύπους ημιτελών τετραγωνικών εξισώσεων με παραδείγματα λύσεων με τη μορφή πίνακα:

  1. Χωρίς να λύσετε, προσδιορίστε τον αριθμό των ριζών για κάθε ημιτελή τετραγωνική εξίσωση:

α) 2x 2 - 3 = 0; β) 3x 2 + 4 = 0; γ) 5x 2 - x = 0; δ) 0,6x 2 = 0; ε) -8x 2 - 4 = 0.

  1. Λύστε ημιτελείς τετραγωνικές εξισώσεις (λύση εξισώσεων, με έλεγχο στον πίνακα, 2 επιλογές):


γ) 2x 2 + 15 = 0

δ) 3x 2 + 2x = 0

ε) 2x 2 - 16 = 0

ε) 5(x 2 + 2) = 2(x 2 + 5)

ζ) (x + 1) 2 - 4 = 0

γ) 2x 2 + 7 = 0

δ) x 2 + 9x = 0

ε) 81x 2 - 64 = 0

ε) 2(x 2 + 4) = 4 (x 2 + 2)

ζ) (x - 2) 2 - 8 = 0.



6. Ανεξάρτητη εργασία σύμφωνα με τις επιλογές:


1 επιλογή

α) 3x 2 - 12 = 0

β) 2x 2 + 6x = 0

ε) 7x 2 - 14 = 0

Επιλογή 2

β) 6x 2 + 24 = 0

γ) 9y 2 - 4 = 0

δ) -y 2 + 5 = 0

ε) 1 - 4y 2 = 0

ε) 8y 2 + y = 0

Επιλογή 3

α) 6y - y 2 = 0

β) 0,1 y 2 - 0,5 y = 0

γ) (x + 1) (x -2) = 0

δ) x(x + 0,5) = 0

ε) x 2 - 2x = 0

ε) x 2 - 16 = 0

Επιλογή 4

α) 9x 2 - 1 = 0

β) 3x - 2x 2 = 0

δ) x 2 + 2x - 3 = 2x + 6

ε) 3x 2 + 7 = 12x+ 7

Επιλογή 5

α) 2x 2 - 18 = 0

β) 3x 2 - 12x = 0

δ) x 2 + 16 = 0

ε) 6x 2 - 18 = 0

ε) x 2 - 5x = 0

Επιλογή 6

β) 4x 2 + 36 = 0

γ) 25y 2 - 1 = 0

δ) -y 2 + 2 = 0

ε) 9 - 16y 2 = 0

ε) 7y 2 + y = 0

Επιλογή 7

α) 4y - y 2 = 0

β) 0,2y 2 - y = 0

γ) (x + 2) (x - 1) = 0

δ) (x - 0,3)x = 0

ε) x 2 + 4x = 0

ε) x 2 - 36 = 0

Επιλογή 8

α) 16x 2 - 1 = 0

β) 4x - 5x 2 = 0

δ) x 2 - 3x - 5 = 11 - 3x

ε) 5x 2 - 6 = 15x - 6


Απαντήσεις σε ανεξάρτητη εργασία:

Επιλογή 1: α)2, β)0;-3; γ)0; δ) χωρίς ρίζες. ρε);

Επιλογή 2 α)0; β) ρίζες? V); ΣΟΛ); ρε); ε)0;- ;

Επιλογή 3 α)0;6; β)0;5; γ)-1;2; δ)0;-0,5; δ)0;2; ε)4

4 επιλογή α). β)0;1,5; γ)0;3; δ)3; δ)0;4 στ)5

5 επιλογή α)3; β)0;4; γ)0; δ) χωρίς ρίζες. ε) στ) 0;5

6 επιλογή α)0; β) δεν υπάρχουν ρίζες. γ) δ) ε) στ) 0;-

7 επιλογή α)0;4; β)0;5; γ)-2;1; δ)0;0,03; δ)0;-4; ε)6

8 επιλογή α) β)0; γ)0;7; δ)4; δ)0;3; μι)

Περίληψη μαθήματος:Διατυπώνεται η έννοια της «ημιτελούς τετραγωνικής εξίσωσης». παρουσιάζονται λύσεις ΔΙΑΦΟΡΕΤΙΚΟΙ ΤΥΠΟΙημιτελείς τετραγωνικές εξισώσεις. Σε εξέλιξη διάφορα καθήκονταέχουν αναπτυχθεί δεξιότητες επίλυσης ημιτελών τετραγωνικών εξισώσεων.


7. Εργασία για το σπίτι: №№ 421(2), 422(2), 423(2,4), 425.

Πρόσθετη εργασία:

Για ποιες τιμές του a είναι η εξίσωση ημιτελής τετραγωνική εξίσωση; Λύστε την εξίσωση για τις λαμβανόμενες τιμές του a:

α) x 2 + 3ax + a - 1 = 0

β) (a - 2)x 2 + ax = 4 - a 2 = 0

Τετραγωνικές εξισώσεις. Διακριτικός. Λύση, παραδείγματα.

Προσοχή!
Υπάρχουν επιπλέον
υλικά στο Ειδικό Τμήμα 555.
Για όσους είναι πολύ "όχι πολύ..."
Και για όσους «πολύ…»)

Τύποι τετραγωνικών εξισώσεων

Τι είναι μια τετραγωνική εξίσωση; Πως μοιάζει; Σε όρο τετραγωνική εξίσωσηη λέξη κλειδί είναι "τετράγωνο".Αυτό σημαίνει ότι στην εξίσωση Αναγκαίωςπρέπει να υπάρχει ένα x τετράγωνο. Επιπλέον, η εξίσωση μπορεί (ή μπορεί και όχι!) να περιέχει μόνο Χ (στην πρώτη δύναμη) και μόνο έναν αριθμό (ελεύθερο μέλος).Και δεν πρέπει να υπάρχουν Χ σε ισχύ μεγαλύτερη από δύο.

Σε μαθηματικούς όρους, μια τετραγωνική εξίσωση είναι μια εξίσωση της μορφής:

Εδώ α, β και γ- κάποιοι αριθμοί. β και γ- απολύτως οποιαδήποτε, αλλά ΕΝΑ– οτιδήποτε άλλο εκτός από το μηδέν. Για παράδειγμα:

Εδώ ΕΝΑ =1; σι = 3; ντο = -4

Εδώ ΕΝΑ =2; σι = -0,5; ντο = 2,2

Εδώ ΕΝΑ =-3; σι = 6; ντο = -18

Λοιπόν, καταλαβαίνεις...

Σε αυτές τις τετραγωνικές εξισώσεις στα αριστερά υπάρχει πλήρες σετμέλη. X σε τετράγωνο με συντελεστή ΕΝΑ, x στην πρώτη δύναμη με συντελεστή σιΚαι ελεύθερο μέλος s.

Τέτοιες τετραγωνικές εξισώσεις ονομάζονται γεμάτος.

Κι αν σι= 0, τι παίρνουμε; Εχουμε Το Χ θα χαθεί στην πρώτη δύναμη.Αυτό συμβαίνει όταν πολλαπλασιάζεται με το μηδέν.) Αποδεικνύεται, για παράδειγμα:

5x 2 -25 = 0,

2x 2 -6x=0,

-x 2 +4x=0

Και ούτω καθεξής. Και αν και οι δύο συντελεστές σιΚαι ντοείναι ίσα με μηδέν, τότε είναι ακόμα πιο απλό:

2x 2 =0,

-0,3x 2 =0

Τέτοιες εξισώσεις όπου κάτι λείπει ονομάζονται ημιτελείς τετραγωνικές εξισώσεις.Κάτι που είναι αρκετά λογικό.) Σημειώστε ότι το x τετράγωνο υπάρχει σε όλες τις εξισώσεις.

Με την ευκαιρία, γιατί ΕΝΑδεν μπορεί να είναι ίσο με μηδέν; Και αντικαθιστάς ΕΝΑμηδέν.) Το τετράγωνο του Χ θα εξαφανιστεί! Η εξίσωση θα γίνει γραμμική. Και η λύση είναι τελείως διαφορετική...

Αυτοί είναι όλοι οι κύριοι τύποι τετραγωνικών εξισώσεων. Πλήρης και ελλιπής.

Επίλυση τετραγωνικών εξισώσεων.

Επίλυση πλήρων τετραγωνικών εξισώσεων.

Οι τετραγωνικές εξισώσεις είναι εύκολο να λυθούν. Σύμφωνα με τύπους και ξεκάθαρα απλούς κανόνες. Στο πρώτο στάδιο είναι απαραίτητο δεδομένη εξίσωσηοδηγούν σε μια τυπική μορφή, δηλ. στη φόρμα:

Εάν η εξίσωση σας έχει ήδη δοθεί σε αυτήν τη μορφή, δεν χρειάζεται να κάνετε το πρώτο στάδιο.) Το κύριο πράγμα είναι να προσδιορίσετε σωστά όλους τους συντελεστές, ΕΝΑ, σιΚαι ντο.

Ο τύπος για την εύρεση των ριζών μιας τετραγωνικής εξίσωσης μοιάζει με αυτό:

Η έκφραση κάτω από το σύμβολο της ρίζας ονομάζεται διακριτική. Περισσότερα για αυτόν όμως παρακάτω. Όπως μπορείτε να δείτε, για να βρούμε το X, χρησιμοποιούμε μόνο α, β και γ. Εκείνοι. συντελεστές από μια τετραγωνική εξίσωση. Απλώς αντικαταστήστε προσεκτικά τις τιμές α, β και γΥπολογίζουμε σε αυτόν τον τύπο. Ας αντικαταστήσουμε με τα δικά σου σημάδια! Για παράδειγμα, στην εξίσωση:

ΕΝΑ =1; σι = 3; ντο= -4. Εδώ το γράφουμε:

Το παράδειγμα έχει σχεδόν λυθεί:

Αυτή είναι η απάντηση.

Όλα είναι πολύ απλά. Και τι, πιστεύεις ότι είναι αδύνατο να κάνεις λάθος; Λοιπόν, ναι, πώς…

Τα πιο συνηθισμένα λάθη είναι η σύγχυση με τις τιμές πρόσημου α, β και γ. Ή μάλλον, όχι με τα σημάδια τους (πού να μπερδευτείτε;), αλλά με την αντικατάσταση αρνητικών τιμών στον τύπο υπολογισμού των ριζών. Αυτό που βοηθά εδώ είναι μια λεπτομερής καταγραφή του τύπου με συγκεκριμένους αριθμούς. Εάν υπάρχουν προβλήματα με τους υπολογισμούς, Κάνε αυτό!

Ας υποθέσουμε ότι πρέπει να λύσουμε το ακόλουθο παράδειγμα:

Εδώ ένα = -6; σι = -5; ντο = -1

Ας πούμε ότι γνωρίζετε ότι σπάνια λαμβάνετε απαντήσεις την πρώτη φορά.

Λοιπόν, μην είσαι τεμπέλης. Θα χρειαστούν περίπου 30 δευτερόλεπτα για να γράψετε μια επιπλέον γραμμή και τον αριθμό των σφαλμάτων θα μειωθεί απότομα. Γράφουμε λοιπόν αναλυτικά, με όλες τις αγκύλες και τα σημάδια:

Φαίνεται απίστευτα δύσκολο να γράψεις τόσο προσεκτικά. Αλλά μόνο έτσι φαίνεται. Δοκίμασε το. Λοιπόν, ή επιλέξτε. Τι καλύτερο, γρήγορο ή σωστό;

Άλλωστε θα σε κάνω χαρούμενο. Μετά από λίγο, δεν θα χρειαστεί να γράψετε τα πάντα τόσο προσεκτικά. Θα αποδειχθεί σωστά από μόνο του. Ειδικά αν χρησιμοποιείτε πρακτικές τεχνικές που περιγράφονται παρακάτω. Αυτό το κακό παράδειγμα με ένα σωρό μειονεκτήματα μπορεί να λυθεί εύκολα και χωρίς λάθη!

Αλλά, συχνά, οι τετραγωνικές εξισώσεις φαίνονται ελαφρώς διαφορετικές. Για παράδειγμα, όπως αυτό: Το αναγνωρίσατε;) Ναι! Αυτό.

ημιτελείς τετραγωνικές εξισώσεις

Επίλυση ημιτελών τετραγωνικών εξισώσεων. α, β και γ.

Μπορούν επίσης να λυθούν χρησιμοποιώντας έναν γενικό τύπο. Απλά πρέπει να καταλάβετε σωστά τι ισούνται εδώ. Το έχεις καταλάβει; Στο πρώτο παράδειγμα a = 1; b = -4; ντοΕΝΑ ? Δεν υπάρχει καθόλου! Λοιπόν ναι, έτσι είναι. Στα μαθηματικά αυτό σημαίνει ότι c = 0 ! Αυτό είναι όλο. Αντικαταστήστε το μηδέν στον τύποντο, και θα τα καταφέρουμε. Το ίδιο και το δεύτερο παράδειγμα. Μόνο που δεν έχουμε μηδέν εδώΜε σι !

, ΕΝΑ

Αλλά οι ημιτελείς τετραγωνικές εξισώσεις μπορούν να λυθούν πολύ πιο απλά. Χωρίς καμία φόρμουλα. Ας εξετάσουμε την πρώτη ημιτελή εξίσωση. Τι μπορείτε να κάνετε στην αριστερή πλευρά; Μπορείτε να βγάλετε το Χ από αγκύλες! Ας το βγάλουμε.
Και τι από αυτό; Και το γεγονός ότι το γινόμενο ισούται με μηδέν αν και μόνο αν κάποιος από τους παράγοντες ισούται με μηδέν! Δεν με πιστεύεις; Εντάξει, τότε καταλήξτε σε δύο μη μηδενικούς αριθμούς που, όταν πολλαπλασιαστούν, θα δίνουν μηδέν!
Δεν δουλεύει; Αυτό είναι... Επομένως, μπορούμε να γράψουμε με σιγουριά:, x 1 = 0.

x 2 = 4 Ολα. Αυτές θα είναι οι ρίζες της εξίσωσής μας. Και τα δύο είναι κατάλληλα. Όταν αντικαθιστούμε οποιοδήποτε από αυτά στην αρχική εξίσωση, παίρνουμε τη σωστή ταυτότητα 0 = 0. Όπως μπορείτε να δείτε, η λύση είναι πολύ πιο απλή από τη χρήση του γενικού τύπου. Επιτρέψτε μου να σημειώσω, παρεμπιπτόντως, ποιο Χ θα είναι το πρώτο και ποιο το δεύτερο - απολύτως αδιάφορο. Είναι βολικό να γράφεις με τη σειρά, x 1 - τι είναι μικρότερο και x 2

- αυτό που είναι μεγαλύτερο.

Η δεύτερη εξίσωση μπορεί επίσης να λυθεί απλά. Μετακινήστε το 9 στη δεξιά πλευρά. Παίρνουμε:

Το μόνο που μένει είναι να εξαγάγετε τη ρίζα από το 9, και αυτό είναι. Θα αποδειχθεί: . Επίσης δύο ρίζες, x 1 = -3.

x 2 = 3
Έτσι λύνονται όλες οι ημιτελείς τετραγωνικές εξισώσεις. Είτε τοποθετώντας το Χ εκτός αγκύλων, είτε απλώς μετακινώντας τον αριθμό προς τα δεξιά και στη συνέχεια εξάγοντας τη ρίζα.

Είναι εξαιρετικά δύσκολο να συγχέουμε αυτές τις τεχνικές. Απλά γιατί στην πρώτη περίπτωση θα πρέπει να εξαγάγετε τη ρίζα του Χ, η οποία είναι κάπως ακατανόητη, και στη δεύτερη περίπτωση δεν υπάρχει τίποτα να βγάλετε από αγκύλες...

Διακριτικός. Διακριτική φόρμουλα. διακριτική ! Σπάνια μαθητής Λυκείου δεν έχει ακούσει αυτή τη λέξη! Η φράση «λύνουμε μέσω ενός διακριτικού» εμπνέει εμπιστοσύνη και σιγουριά. Γιατί δεν χρειάζεται να περιμένεις κόλπα από τον διακρίνοντα! Είναι απλό και χωρίς προβλήματα στη χρήση.) Σας υπενθυμίζω τον πιο γενικό τύπο επίλυσης όποιοςτετραγωνικές εξισώσεις:

Η έκφραση κάτω από το σύμβολο της ρίζας ονομάζεται διάκριση. Συνήθως η διάκριση υποδηλώνεται με το γράμμα ρε. Διακριτικός τύπος:

D = b 2 - 4ac

Και τι είναι τόσο αξιοσημείωτο σε αυτή την έκφραση; Γιατί άξιζε ένα ιδιαίτερο όνομα; Τι η έννοια του διακρινόμενου;Παρά όλα αυτά -σι,ή σε αυτόν τον τύπο δεν το αποκαλούν συγκεκριμένα τίποτα... Γράμματα και γράμματα.

Εδώ είναι το θέμα. Κατά την επίλυση μιας τετραγωνικής εξίσωσης χρησιμοποιώντας αυτόν τον τύπο, είναι δυνατό μόνο τρεις περιπτώσεις.

1. Η διάκριση είναι θετική.Αυτό σημαίνει ότι η ρίζα μπορεί να εξαχθεί από αυτό. Το αν η ρίζα εξάγεται καλά ή κακώς είναι ένα άλλο ερώτημα. Σημασία έχει τι εξάγεται καταρχήν. Τότε η τετραγωνική εξίσωσή σας έχει δύο ρίζες. Δύο διαφορετικές λύσεις.

2. Η διάκριση είναι μηδέν.Τότε θα έχετε μία λύση. Αφού η πρόσθεση ή η αφαίρεση του μηδενός στον αριθμητή δεν αλλάζει τίποτα. Αυστηρά μιλώντας, αυτό δεν είναι μια ρίζα, αλλά δύο πανομοιότυπα. Αλλά, σε μια απλοποιημένη έκδοση, συνηθίζεται να μιλάμε μια λύση.

3. Η διάκριση είναι αρνητική.Η τετραγωνική ρίζα ενός αρνητικού αριθμού δεν μπορεί να ληφθεί. Καλά εντάξει. Αυτό σημαίνει ότι δεν υπάρχουν λύσεις.

Ειλικρινά μιλώντας, όταν απλή λύσητετραγωνικές εξισώσεις, η έννοια του διαχωριστή δεν απαιτείται ιδιαίτερα. Αντικαθιστούμε τις τιμές των συντελεστών στον τύπο και μετράμε. Όλα γίνονται εκεί από μόνα τους, δύο ρίζες, μία και καμία. Ωστόσο, κατά την επίλυση πιο σύνθετων εργασιών, χωρίς γνώση νόημα και τύπος της διάκρισηςόχι αρκετά. Ειδικά σε εξισώσεις με παραμέτρους. Τέτοιες εξισώσεις είναι ακροβατικές για την Κρατική Εξέταση και την Ενιαία Κρατική Εξέταση!)

Ετσι, πώς να λύσετε τετραγωνικές εξισώσειςμέσα από τη διάκριση που θυμήθηκες. Ή έμαθες, κάτι που επίσης δεν είναι κακό.) Ξέρεις πώς να προσδιορίζεις σωστά α, β και γ. Ξέρεις πως; προσεχτικάαντικαταστήστε τα στον τύπο της ρίζας και προσεχτικάμετρήστε το αποτέλεσμα. Το κατάλαβες αυτό λέξη-κλειδίΕδώ - προσεχτικά;

Τώρα σημειώστε τις πρακτικές τεχνικές που μειώνουν δραματικά τον αριθμό των σφαλμάτων. Τα ίδια που οφείλονται στην απροσεξία... Για τα οποία αργότερα γίνεται επώδυνο και προσβλητικό...

Πρώτο ραντεβού . Μην είστε τεμπέλης πριν λύσετε μια εξίσωση του δευτεροβάθμιου και φέρτε την σε τυπική μορφή. Τι σημαίνει αυτό;
Ας πούμε ότι μετά από όλους τους μετασχηματισμούς παίρνετε την ακόλουθη εξίσωση:

Μην βιαστείτε να γράψετε τον τύπο root! Σχεδόν σίγουρα θα μπερδέψετε τις πιθανότητες α, β και γ.Κατασκευάστε σωστά το παράδειγμα. Πρώτα, X τετράγωνο, μετά χωρίς τετράγωνο, μετά ο ελεύθερος όρος. Σαν αυτό:

Και πάλι, μην βιάζεστε! Ένα μείον μπροστά από ένα Χ στο τετράγωνο μπορεί πραγματικά να σας αναστατώσει. Ξεχνιέται εύκολα... Ξεφορτωθείτε το μείον. Πως; Ναι, όπως διδάχτηκε στο προηγούμενο θέμα! Πρέπει να πολλαπλασιάσουμε ολόκληρη την εξίσωση με -1. Παίρνουμε:

Αλλά τώρα μπορείτε να γράψετε με ασφάλεια τον τύπο για τις ρίζες, να υπολογίσετε τη διάκριση και να ολοκληρώσετε την επίλυση του παραδείγματος. Αποφασίστε μόνοι σας.

Θα πρέπει τώρα να έχετε τις ρίζες 2 και -1. Υποδοχή δεύτερη. Ελέγξτε τις ρίζες! Σύμφωνα με το θεώρημα του Vieta. Μη φοβάσαι, θα τα εξηγήσω όλα! Ελεγχοςτο τελευταίο πράγμα την εξίσωση. Εκείνοι. αυτόν που χρησιμοποιήσαμε για να σημειώσουμε τον τύπο της ρίζας. Αν (όπως σε αυτό το παράδειγμα) ο συντελεστήςα = 1 , ο έλεγχος των ριζών είναι εύκολος. Αρκεί να τα πολλαπλασιάσουμε. Το αποτέλεσμα θα πρέπει να είναι ένα ελεύθερο μέλος, δηλ. στην περίπτωσή μας -2. Παρακαλώ σημειώστε, όχι 2, αλλά -2! Δωρεάν μέλος με το ζώδιο σου

. Αν δεν τα καταφέρουν, σημαίνει ότι κάπου έχουν ήδη μπλέξει. Ψάξτε για το σφάλμα. σιΕάν λειτουργεί, πρέπει να προσθέσετε τις ρίζες. Τελευταίος και τελευταίος έλεγχος. Ο συντελεστής πρέπει να είναι Με απεναντι απο σιοικείος. Στην περίπτωσή μας -1+2 = +1. Ένας συντελεστής
, που είναι πριν από το Χ, ισούται με -1. Λοιπόν, όλα είναι σωστά! Είναι κρίμα που αυτό είναι τόσο απλό μόνο για παραδείγματα όπου το x τετράγωνο είναι καθαρό, με συντελεστήα = 1.

Αλλά τουλάχιστον ελέγξτε σε τέτοιες εξισώσεις! Θα υπάρχουν όλο και λιγότερα λάθη. Τρίτη υποδοχή . Εάν η εξίσωσή σας έχει κλασματικούς συντελεστές, απαλλαγείτε από τα κλάσματα! Πολλαπλασιάστε την εξίσωση επίκοινό παρονομαστή

, όπως περιγράφεται στο μάθημα "Πώς λύνουμε εξισώσεις; Πανομοιότυποι μετασχηματισμοί." Όταν εργάζεστε με κλάσματα, τα σφάλματα συνεχίζουν να εισχωρούν για κάποιο λόγο...

Παρεμπιπτόντως, υποσχέθηκα να απλοποιήσω το κακό παράδειγμα με ένα σωρό μειονεκτήματα. Σας παρακαλούμε! Να τος.

Για να μην μπερδευτούμε με τα πλην, πολλαπλασιάζουμε την εξίσωση με -1. Παίρνουμε:

Αυτό είναι όλο! Η επίλυση είναι απόλαυση!

Λοιπόν, ας συνοψίσουμε το θέμα.:

Πρακτικές συμβουλές 1. Πριν λύσουμε, φέρνουμε την τετραγωνική εξίσωση σε τυπική μορφή και την κατασκευάζουμε.

σωστά

2. Αν υπάρχει αρνητικός συντελεστής μπροστά από το τετράγωνο του Χ, τον εξαλείφουμε πολλαπλασιάζοντας ολόκληρη την εξίσωση με -1.

3. Αν οι συντελεστές είναι κλασματικοί, εξαλείφουμε τα κλάσματα πολλαπλασιάζοντας ολόκληρη την εξίσωση με τον αντίστοιχο παράγοντα. 4. Εάν το x τετράγωνο είναι καθαρό, ο συντελεστής του είναι ίσος με ένα, η λύση μπορεί εύκολα να επαληθευτεί χρησιμοποιώντας το θεώρημα του Vieta.

Κάνε το!

Τώρα μπορούμε να αποφασίσουμε.)

Λύστε εξισώσεις:

8x 2 - 6x + 1 = 0

x 2 + 3x + 8 = 0

x 2 - 4x + 4 = 0

(x+1) 2 + x + 1 = (x+1)(x+2)

Επομένως, μπορούμε να γράψουμε με σιγουριά:
Απαντήσεις (σε αταξία):

x 2 = 52

x 1,2 =
x 1 = 2

x 2 = -0,5

Επίσης δύο ρίζες
x 1 = -3

x - οποιοσδήποτε αριθμός

χωρίς λύσεις
x 1 = 0,25

Ταιριάζουν όλα; Εξαιρετική! Οι τετραγωνικές εξισώσεις δεν είναι ο πονοκέφαλος σου. Τα τρία πρώτα λειτούργησαν, αλλά τα υπόλοιπα όχι; Τότε το πρόβλημα δεν είναι με τις δευτεροβάθμιες εξισώσεις. Το πρόβλημα είναι στους πανομοιότυπους μετασχηματισμούς των εξισώσεων. Ρίξτε μια ματιά στο σύνδεσμο, είναι χρήσιμο.

Δεν δουλεύει αρκετά; Ή δεν βγαίνει καθόλου; Στη συνέχεια, η Ενότητα 555 θα σας βοηθήσει. Όλα αυτά τα παραδείγματα αναλύονται εκεί. Απεικονίζεται κύριοςλάθη στη λύση. Φυσικά, μιλάμε και για τη χρήση πανομοιότυπων μετασχηματισμών στη λύση διαφορετικές εξισώσεις. Βοηθάει πολύ!

Αν σας αρέσει αυτό το site...

Παρεμπιπτόντως, έχω μερικές ακόμη ενδιαφέρουσες τοποθεσίες για εσάς.)

Μπορείτε να εξασκηθείτε στην επίλυση παραδειγμάτων και να μάθετε το επίπεδό σας. Δοκιμή με άμεση επαλήθευση. Ας μάθουμε - με ενδιαφέρον!)

Μπορείτε να εξοικειωθείτε με συναρτήσεις και παραγώγους.

Τετραγωνικές εξισώσεις. Γενικές πληροφορίες.

ΣΕ τετραγωνική εξίσωσηπρέπει να υπάρχει x τετράγωνο (γι' αυτό λέγεται

"τετράγωνο") Εκτός από αυτήν, η εξίσωση μπορεί (ή μπορεί και όχι!) να περιέχει απλώς Χ (στην πρώτη δύναμη) και

απλά ένας αριθμός (ελεύθερο μέλος). Και δεν πρέπει να υπάρχουν Χ σε ισχύ μεγαλύτερη από δύο.

Αλγεβρική εξίσωσηγενική εμφάνιση.

Οπου Χ- δωρεάν μεταβλητή, ένα, σι, ντο— συντελεστές και ένα0 .

Για παράδειγμα:

Εκφραση που ονομάζεται τετραγωνικό τριώνυμο.

Τα στοιχεία μιας τετραγωνικής εξίσωσης έχουν κατάλληλα ονόματα:

ονομάζεται ο πρώτος ή ο υψηλότερος συντελεστής,

· ονομάζεται δεύτερος ή συντελεστής στο ,

· καλείται ελεύθερο μέλος.

Πλήρης τετραγωνική εξίσωση.

Αυτές οι τετραγωνικές εξισώσεις έχουν ένα πλήρες σύνολο όρων στα αριστερά. Χ τετράγωνο γ

συντελεστής ΕΝΑ, x στην πρώτη δύναμη με συντελεστή σιΚαι Ελεύθερος μέλοςΜε. ΣΕόλους τους συντελεστές

πρέπει να είναι διαφορετικό από το μηδέν.

Ατελήςείναι μια τετραγωνική εξίσωση στην οποία τουλάχιστον ένας από τους συντελεστές, εκτός

ο κύριος όρος (είτε ο δεύτερος συντελεστής είτε ο ελεύθερος όρος) είναι ίσος με μηδέν.

Ας το προσποιηθούμε σι= 0, - Χ στην πρώτη δύναμη θα εξαφανιστεί. Αποδεικνύεται, για παράδειγμα:

2x 2 -6x=0,

Και ούτω καθεξής. Και αν και οι δύο συντελεστές σιΚαι ντοείναι ίσα με μηδέν, τότε όλα είναι ακόμα πιο απλά, Για παράδειγμα:

2x 2 =0,

Σημειώστε ότι το x τετράγωνο εμφανίζεται σε όλες τις εξισώσεις.

Γιατί ΕΝΑδεν μπορεί να είναι ίσο με μηδέν; Τότε το x στο τετράγωνο θα εξαφανιστεί και η εξίσωση θα γίνει γραμμικός .

Και η λύση είναι τελείως διαφορετική...

Περισσότερο με απλό τρόπο. Για να το κάνετε αυτό, βάλτε το z εκτός αγκύλων. Θα λάβετε: z(аz + b) = 0. Οι παράγοντες μπορούν να γραφτούν: z=0 και аz + b = 0, αφού και οι δύο μπορεί να έχουν ως αποτέλεσμα μηδέν. Στον συμβολισμό az + b = 0, μετακινούμε το δεύτερο προς τα δεξιά με διαφορετικό πρόσημο. Από εδώ παίρνουμε z1 = 0 και z2 = -b/a. Αυτές είναι οι ρίζες του πρωτότυπου.

Αν υπάρχει ημιτελής εξίσωση της μορφής аz² + с = 0, in σε αυτήν την περίπτωσηΒρίσκονται μετακινώντας απλώς τον ελεύθερο όρο στη δεξιά πλευρά της εξίσωσης. Αλλάξτε και το σήμα του. Το αποτέλεσμα θα είναι az² = -с. Εκφράστε z² = -c/a. Πάρτε τη ρίζα και σημειώστε δύο λύσεις - θετικές και αρνητικό νόηματετραγωνική ρίζα.

Σημείωση

Εάν υπάρχουν κλασματικοί συντελεστές στην εξίσωση, πολλαπλασιάστε ολόκληρη την εξίσωση με τον κατάλληλο παράγοντα, ώστε να απαλλαγείτε από τα κλάσματα.

Η γνώση του τρόπου επίλυσης τετραγωνικών εξισώσεων είναι απαραίτητη τόσο για μαθητές όσο και για μαθητές, μερικές φορές αυτό μπορεί επίσης να βοηθήσει έναν ενήλικα συνηθισμένη ζωή. Υπάρχουν πολλές συγκεκριμένες μέθοδοι λύσης.

Επίλυση Τετραγωνικών Εξισώσεων

Τετραγωνική εξίσωση της μορφής a*x^2+b*x+c=0. Ο συντελεστής x είναι η επιθυμητή μεταβλητή, τα a, b, c είναι αριθμητικοί συντελεστές. Θυμηθείτε ότι το σύμβολο "+" μπορεί να αλλάξει σε "-".

Για να λυθεί αυτή η εξίσωση, είναι απαραίτητο να χρησιμοποιηθεί το θεώρημα του Vieta ή να βρεθεί ο διαχωριστής. Η πιο συνηθισμένη μέθοδος είναι η εύρεση της διάκρισης, αφού για ορισμένες τιμές των a, b, c δεν είναι δυνατό να χρησιμοποιηθεί το θεώρημα του Vieta.

Για να βρείτε το διαχωριστικό (D), πρέπει να γράψετε τον τύπο D=b^2 - 4*a*c. Η τιμή D μπορεί να είναι μεγαλύτερη από, μικρότερη ή ίση με μηδέν. Εάν το D είναι μεγαλύτερο ή μικρότερο από το μηδέν, τότε θα υπάρχουν δύο ρίζες, εάν D = 0, τότε μόνο μία ρίζα παραμένει ακριβέστερα, μπορούμε να πούμε ότι το D σε αυτή την περίπτωση έχει δύο ισοδύναμες ρίζες. Αντικαταστήστε τους γνωστούς συντελεστές a, b, c στον τύπο και υπολογίστε την τιμή.

Αφού βρείτε το διακριτικό, χρησιμοποιήστε τους τύπους για να βρείτε το x: x(1) = (- b+sqrt(D))/2*a; x(2) = (- b-sqrt(D))/2*a όπου sqrt είναι συνάρτηση που σημαίνει απόσπασμα τετραγωνική ρίζααπό δεδομένου αριθμού. Αφού υπολογίσετε αυτές τις παραστάσεις, θα βρείτε δύο ρίζες της εξίσωσής σας, μετά τις οποίες η εξίσωση θεωρείται λυμένη.

Αν το D είναι μικρότερο από το μηδέν, τότε εξακολουθεί να έχει ρίζες. Αυτή η ενότητα πρακτικά δεν μελετάται στο σχολείο. Οι φοιτητές πρέπει να γνωρίζουν ότι κάτω από τη ρίζα εμφανίζεται ένας αρνητικός αριθμός. Το ξεφορτώνονται επισημαίνοντας το φανταστικό μέρος, δηλαδή το -1 κάτω από τη ρίζα είναι πάντα ίσο με το φανταστικό στοιχείο "i", το οποίο πολλαπλασιάζεται με τη ρίζα με τον ίδιο θετικό αριθμό. Για παράδειγμα, αν D=sqrt(-20), μετά τον μετασχηματισμό προκύπτει D=sqrt(20)*i. Μετά από αυτόν τον μετασχηματισμό, η επίλυση της εξίσωσης ανάγεται στην ίδια εύρεση ριζών όπως περιγράφηκε παραπάνω.

Το θεώρημα του Vieta αποτελείται από την επιλογή των τιμών των x(1) και x(2). Χρησιμοποιούνται δύο πανομοιότυπες εξισώσεις: x(1) + x(2)= -b; x(1)*x(2)=с. Και πολύ σημαντικό σημείοείναι το πρόσημο μπροστά από τον συντελεστή b, θυμηθείτε ότι αυτό το πρόσημο είναι αντίθετο από αυτό της εξίσωσης. Με την πρώτη ματιά, φαίνεται ότι ο υπολογισμός των x(1) και x(2) είναι πολύ απλός, αλλά κατά την επίλυση, θα βρεθείτε αντιμέτωποι με το γεγονός ότι θα πρέπει να επιλέξετε τους αριθμούς.

Στοιχεία επίλυσης τετραγωνικών εξισώσεων

Σύμφωνα με τους κανόνες των μαθηματικών, ορισμένα μπορούν να παραγοντοποιηθούν: (a+x(1))*(b-x(2))=0, εάν καταφέρατε να μετατρέψετε αυτήν την τετραγωνική εξίσωση με παρόμοιο τρόπο χρησιμοποιώντας μαθηματικούς τύπους, τότε μη διστάσετε να γράψε την απάντηση. Τα x(1) και x(2) θα είναι ίσα με τους διπλανούς συντελεστές σε αγκύλες, αλλά με το αντίθετο πρόσημο.

Επίσης, μην ξεχνάτε τις ημιτελείς τετραγωνικές εξισώσεις. Μπορεί να σας λείπουν κάποιοι από τους όρους, αν ναι, τότε όλοι οι συντελεστές του είναι απλώς ίσοι με μηδέν. Αν δεν υπάρχει τίποτα μπροστά από το x^2 ή το x, τότε οι συντελεστές a και b είναι ίσοι με 1.